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Performance Measurement in Blind
Audio Source Separation

Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte

Abstract—In this paper, we discuss the evaluation of blind
audio source separation (BASS) algorithms. Depending on the
exact application, different distortions can be allowed between an
estimated source and the wanted true source. We consider four dif-
ferent sets of such allowed distortions, from time-invariant gains
to time-varying filters. In each case, we decompose the estimated
source into a true source part plus error terms corresponding
to interferences, additive noise, and algorithmic artifacts. Then,
we derive a global performance measure using an energy ratio,
plus a separate performance measure for each error term. These
measures are computed and discussed on the results of several
BASS problems with various difficulty levels.

Index Terms—Audio source separation, evaluation, measure,
performance, quality.

1. INTRODUCTION

LIND audio source separation (BASS) has been a topic

of intense work during the last years. Several successful
models have emerged, such as independent component analysis
(ICA) [1], sparse decompositions (SD) [2], and computational
auditory scene analysis (CASA) [3]. However, it is still hard to
evaluate an algorithm or to compare several algorithms because
of the lack of appropriate performance measures and common
test sounds, even in the very simple case of linear instantaneous
mixtures. In this paper, we design new numerical performance
criteria that can help evaluate and compare algorithms when ap-
plied on usual BASS problems. Before we present these, let us
first describe the problems considered and discuss the existing
performance measures and their drawbacks.

A. BASS General Notations

The BASS problem arises when one or several microphones
record a sound that is the mixture of sounds coming from several
sources. For simplicity, we consider here only linear time-
invariant mixing systems. If we denote by s (t) the signal emitted
by the jth source (1 < j < n), ;(¢) the signal recorded by the
ith microphone (1 < i < m), and a;;(7) the (causal) source-to-

Manuscript received June 9, 2004; revised May 1, 2005. This work was sup-
ported in part by the GdR ISIS (CNRS) and was mainly performed when E. Vin-
cent was with IRCAM, Paris, France, as part of the Junior Researchers Project
“Resources for Audio Signal Separation.” C. Févotte was supported by the Eu-
ropean Commission funded Research Training Network HASSIP (HPRN-CT-
2002-00285). The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Gerald Schuller.

E. Vincent is with the Electronic Engineering Department, Queen Mary
University of London, London El1 4NS, U.K. (e-mail: emmanuel.vin-
cent@elec.qmul.ac.uk).

R. Gribonval is with IRISA, Campus de Beaulieu, F-35042 Rennes Cedex,
France (e-mail: remi.gribonval @irisa.fr).

C. Févotte is with the Engineering Department, Cambridge University, Cam-
bridge, CB2 1PZ U.K. (e-mail: cf269 @eng.cam.ac.uk).

Digital Object Identifier 10.1109/TSA.2005.858005

microphone filters, we have 2;(t) = >-7_, +20 aii(1)s(t—

7)+n,(t), where n;(t) is some additive sensor noise. This m X
n mixture is expressed more conveniently using the matrix of
filters formalism as

X=Axs+n (D

where * denotes convolution. In the following, variables
without time index will denote batch sequences, e.g.,
x = [x(0),...,x(T — 1)]. Bold letters will be used for
multichannel variables, such as the vector of observations x,
the vector of sources s, or the mixing system A, and plain
letters for monochannel variables, such as the jth source s;.

B. BASS Applications and Difficulty Levels

BASS covers many applications [4], and the criteria used
to assess the performance of an algorithm depend on the ap-
plication. Sometimes the goal is to extract source signals that
are listened to, straight after separation or after some postpro-
cessing audio treatment. Sometimes, it is to retrieve source
features and/or mixing parameters to describe complex audio
scenes in a way related to human hearing. In this paper, we
focus on the most common task addressed by BASS algorithms:
source extraction.

Source extraction consists in extracting from a mixture one or
several mono source signals s;. Examples include the denoising
and dereverberation of speech for auditory protheses and the
extraction of interesting sounds in musical excerpts for elec-
tronic music creation. Without specific prior information about
the sources s or the mixing system A, this problem suffers from
well-known theoretical indeterminacies [1], [S]. Generally, the
sources can only be recovered up to a permutation and arbitrary
gains, but further indeterminacies may exist in convolutive mix-
tures (e.g., up to a filter).

Source extraction can be addressed at various difficulty levels
depending on the structure of the mixing system [6], [7]. A first
difficulty criterion is the respective number of sources and sen-
sors. In noiseless determined instantaneous mixtures (i.e., when
m = n), there exists a time-invariant linear demixing system
W = Al After W has been estimated, the sources can be
simply recovered as s = Wx. In noiseless under-determined
mixtures (i.e., when m < n), this is not possible anymore since
the equation x = As has an affine set of solutions. This non-
trivial indeterminacy can be removed using knowledge about
the sources, such as sparse priors [2]. A second difficulty cri-
terion is the length of the mixing filters. Many algorithms for
instantaneous noiseless determined mixtures provide near per-
fectresults [1], [2], [8]. However, convolutive mixtures still raise
challenging theoretical issues such as the identifiability of the
sources up to gain and technical difficulties like the estimation
of long mixing filters in short-duration mixtures.
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C. Existing Performance Measures and Their Limitations

Some performance measures for source extraction have al-
ready been defined in the literature. A first kind of measure
assumes that the estimated sources S have been recovered by
applying a time-invariant linear demixing system W to the ob-
servations x. The global system B = W x A verifies s = Bxs.
The quality of 5; is then measured by the row intersymbol
interference [7]

2 2
> 1B (T)" — max; - By (7)]

max;: - |Bjj (7’)|2

ISI; = @
ISI; is always positive and equal to zero only when &; is
equal to the true source s; up to a gain and a delay T with
(4',7) = argmax; , |Bj;(7)|?. Thiscriterionand other similar
ones [9] are relevant, but cannot be applied to underdetermined
BASS problems because a perfect time-invariant demixing
system W does not exist generally. Moreover, even in determined
BASS, it is possible to use other separation schemes than
time-invariant linear demixing. A second kind of measure
consists in comparing directly 5; and s;, paying attention
to the indeterminacies of the task. The gain indeterminacy
can be handled by comparing Lo-normalized versions of the
sources with the relative square distance [2], [6], [10]

2

. A3)

=L — Gi
15511 [l
This measure is also relevant since it is always positive and
equal to zero only when §; equals s; up to a gain. However,
D takes at most the value D = 2, even in the worst case,
where the permutation indeterminacy has been badly solved
and where §; equals another source s; orthogonal to s;. One
would then desire a distortion D = +oco. More generally, D
evaluates bad results rather coarsely. For example, §; = s/
and 3; = s;:/||s;j|| +0.02s;/||s;]| lead to similar measures
D =2 and D = 1.96 but are perceived quite differently.
These performance measures suffer from further limitations.
Both consider only the case where 5; has to be recovered up to a
permutation and a gain. However, in some applications, it may be
relevant to allow more or less distortions, not necessarily related
to the theoretical indeterminacies of the problem. For example
in hi-fi musical applications, it may be important to recover the
sources up to a simple gain since arbitrary filtering modifies
the timbre of musical instruments. On the contrary, in speech
applications, some filtering distortion may be allowed because
lowpass filtered speech is generally still intelligible. Moreover,
both measures provide a single performance criterion containing
all estimation errors. However, in audio applications, it is
important to measure separately the amount of interferences from
nonwanted sources, the amount or remaining sensor noise, and
the amount of “burbling” artifacts (also termed “musical noise”).
Such artifacts are often considered as a more annoying kind of
error than interferences, that are themselves more annoying than
sensor noise. Many separation methods for underdetermined
BASS problems produce few interferences but many artifacts
[11]-[13], and this cannot be described by a single criterion.

D =

min
e=%£1

D. Overview of Our Proposals

The goal of this paper is to design new performance cri-
teria that can be applied on all usual BASS problems and over-
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come the limitations above. The only assumptions we make is
as follows.

e The true source signals and noise signals (if any) are
known.

o The user chooses a family of allowed distortions F ac-
cording to the application (but independently of the kind
of mixture or the algorithm used).

The mixing system and the demixing technique do not need to
be known.

Separate performance measures are computed for each esti-
mated source 5; by comparing it to a given true source s;. Note
that the measures do not take into account the permutation inde-
terminacy of BASS. If necessary, 5; may be compared with all
the sources (s;/)1<;/<n and the “true source” may be selected
as the one that gives the best results.

The computation of the criteria involves two successive steps.
In a first step, we decompose 5 as

Sj = Starget + €interf t €noise 1 €artif (4)

where Siarget = f(s;) is a version of s; modified by an al-
lowed distortion f € F, and where €interf, Enoise, aNd €artif are,
respectively, the interferences, noise, and artifacts error terms.
These four terms should represent the part of 5; perceived as
coming from the wanted source s ;, from other unwanted sources
(sj7) 7, from sensor noises (7;)1<i<m, and from other causes
(like forbidden distortions of the sources and/or “burbling” arti-
facts). In a second step, we compute energy ratios to evaluate the
relative amount of each of these four terms either on the whole
signal duration or on local frames.

E. Structure of the Paper

The rest of the paper has the following structure. In Section II,
we show how to decompose 5; and compute the performance
measures when F is the set of time-invariant gains distortions
(this covers our preliminary proposals introduced in [14]). In
Section III, we extend these results to the case where F con-
tains time-varying and/or filtering distortions. In Section IV, we
test the measures on several BASS problems. In Section V, we
discuss their relevance for algorithm evaluation and comment
their correlation with subjective performance on informal lis-
tening tests. Finally, we conclude in Section VI by pointing out
further perspectives about BASS evaluation and introducing our
online evaluation database BASS-dB [15].

II. PERFORMANCE CRITERIA FOR TIME-INVARIANT
GAINS ALLOWED DISTORTIONS

We propose in this section performance criteria for the most
usual case when the only allowed distortions on 5} are time-in-
variant gains. We first show how to decompose 5; into four
terms as in (4), and then we define relevant energy ratios be-
tween these terms.

Let us denote in the following (a, b) := ZtT:_Ol a(t)b(t) the
inner product between two possibly complex-valued! signals a
and b of length 7', where b is the complex conjugate of b, and
llal|? := (a,a) the energy of a.

! Audio signals are real-valued, but it is costless to express our performance
criteria in the slightly more general complex setting which might be useful for
other types of signals.
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A. Estimated Source Decomposition by
Orthogonal Projections

When A is a time-invariant instantaneous matrix and when
the mixture is separated by applying a time-invariant instanta-
neous matrix W, §j can be decomposed as

m
8= (WA)jis+ Y (WA)jjsj + Y Wimi. (5

i'#i i=1
Since (WA)),; is a time-invariant gain, it seems natural to iden-
tify the three terms of this sum with S¢arget, €interf, and Enoise,
respectively (eartif = 0 here). However, (5) cannot be used as
a definition of Starget, Cinterfs €noises A €artif Since the mixing
and demixing systems are unknown. Also, the two first terms of
(5) may not be perceived as separate sound objects when a non-
wanted source s/ is highly correlated with the wanted source
Sj.
Instead, the decomposition we propose is based on orthog-
onal projections. Let us denote IT{y1,...,yr} the orthogonal
projector onto the subspace spanned by the vectors y1, . .., yk.
The projector is a T' x T matrix, where T is the length of these

vectors. We consider the three orthogonal projectors

P, =11{s;} (6)
By =T {(sj )1<jr<n} (7
P i=1H{(sj )1<j0<ns (ni)1<icm} ®)
and we decompose 5 as the sum of the four terms
Starget ‘= st§j 9
Cintert := P55 — Py, 5 (10)
€noise := Psnsj — Ps5; (11)
Cartif :=5; — PsnSj. (12)

The computation of s¢,;get is straightforward since it involves
only a simple inner product: Searget = (3, 5;)5;/|s;>. The
computation of ejytert 1S @ bit more complex. If the sources are
mutually orthogonal, then eintert = Y ;i (5j, 55850 /|51
Otherwise, if we use a vector c of coefficients such that Pss; =
D i1 Cirsy = cHs (where () denotes Hermitian transpo-
sition), then ¢ = R[(8},81),..., (8}, sn)]T, where Rsg is
the Gram matrix of the sources defined by (Rss);;7 = (s;,557)-
The computation of Ps ,, proceeds in a similar fashion; however,
most of the time we can make the assumption that the noise sig-
nals are mutually orthogonal and orthogonal to each source, so
that Ps7n/8\j I~ PS/S\]' + Z:r;lCS\J nl>nz/||nl||2

B. From Estimated Source Decomposition to Global
Performance Measures

Starting from the decomposition of 5; in (6)-(12), we now de-
fine numerical performance criteria by computing energy ratios
expressed in decibels. We define the source-to-distortion ratio

[|ssarget||*
SDR := 10log (13)
810 “einterf + €noise + eartif||2
the source-to-interferences ratio
2
SIR := 101og;, M (14)
||6intcrf||
the sources-to-noise ratio
i 2
SNR := 10logy, I3target + Cintert | (15)

||en0ise||2
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and the sources-to-artifacts ratio

||starget + Einterf + enoise||2

SAR =10 loglo ||e tf||2

(16)

These four measures are inspired by the usual definition of
the SNR, with a few modifications. For instance, the definition
of the SNR involving the term S¢arget + €inters at the numer-
ator aims at making it independent of the SIR. Indeed, con-
sider the case of an instantaneous noisy 2 X 2 mixture where
$1 = €$1+ 52+ €noise With ||es1 || < ||s2]] and ||enoise|| = ||€s1]|-
Then 57 is perceived as dominated by the interfering signal, with
the noise energy making an insignificant contribution. This is
consistent with SIR ~ —oo and SNR & +oo using our defini-
tions. An SNR defined by 10 log; o (|| Starget||?/||€noise||?) would
give SNR =~ 0 instead. Similarly, the SAR is independent of the
SIR and the SNR since the numerator in (16) includes the inter-
ferences and noise terms as well.

Note that the numerical precision of the measures is lower
for high-performance values than for low ones. For example,
a high SDR means that the denominator in (13) is very small,
so that small constant-amplitude errors in S¢arget (due to signal
quantization) result in large SDR deviations. In particular, when
the signals correspond to sound files, the precision of the results
depends on the number of bits per sample.

C. Local Performance Measures

When the powers of Starget, Cinterfs €noise> ANd €artif vary
across time, the perceived separation quality also varies accord-
ingly. We take this into account by defining local numerical per-
formance measures in the following way.

First, we compute Starget, Cinterf» €noise> aNd €artif as in
(6)—(12). Then, denoting w a finite-length centered window,
we compute the windowed signals s{, ets €interts Enoises and
enie centered in r, where s{, .. (1) = w(t — 7)starget(t),
and so on. Finally, for each r, we compute the local measures
SDR", SIR", SNR", and SAR" as in (13)—(16) but replacing
the original terms by the windowed terms centered in 7.

SDR", SIR", SNR", and SAR", thus, measure the separation
performance on the time frame centered in 7. All these values
can be visualized more globally by plotting them against r or
by summarizing them into cumulative histograms [13]. Global
performance measures can also be defined in the spirit of seg-
mental SNR [16]. The shape of the window w has not much
importance generally, only its duration is relevant. Thus, a rect-
angular window may be used for simplicity.

D. Comparison With Existing Performance Measures

The new performance measures solve most of the problems
encountered with existing measures discussed in Section I-C.

First, the computation does not rely on the assumption that
a particular type of demixing system or algorithm is used. The
only assumption is that §; has to be recovered up to a time-in-
variant gain. Measures for other allowed distortions are pro-
posed in Section III.

Second, the SDR has better properties than D. Simple cal-
culus shows that both measures are identical up to a one-to-one
mapping 10~ SPR/10 = D(4—D)/(2— D)?. However, contrary
to —10log;, D, the SDR is not lower-bounded: SDR = —o0
when Siarget = 0 and evaluation of bad results is less coarse
[14].
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Third, four criteria are proposed instead of a single one. The
SIR, SNR, and SAR allow to distinguish between estimation
errors that are mostly dominated by interferences, noise, or ar-
tifacts. This is verified on test mixtures in Section I'V.

III. PERFORMANCE CRITERIA FOR OTHER
ALLOWED DISTORTIONS

A. Which Equations Have to be Modified?

After having defined performance measures for time-in-
variant gains allowed distortions, we consider now similar
measures for other allowed distortions. Much of the work
done in the previous section is still relevant here and only the
definitions of the orthogonal projectors in (6)—(8) have to be
modified.

Indeed, the two steps consisting in decomposing §; in four
terms and in computing energy ratios between these terms do
not depend on each other. Since the kind of allowed distortion
is not used in the second step, the performance measures are
always defined by (13)—(16), whatever is the allowed distortion.

Moreover, the decomposition of §j can also often be defined
by (9)-(12), but using other orthogonal projectors depending
on the allowed distortions. In the following, we present succes-
sively the projectors used to decompose 5; when filtering and/or
time-varying distortions are allowed.

B. Time-Invariant Filters Allowed Distortions

When time-invariant filters are allowed, Starget iS nOt a
scaled version of s; anymore, but a filtered version expressed
as Starget(t) = ZT;Ol h(T) x sj(t — 7). If we express this in
terms of subspaces, Starget does not generally belong to the
subspace spanned by s; but to the subspace spanned by delayed
versions of s;. So, we can define S;,,4ct by projecting §j on
this new subspace.

We denote by s7 and n;] the source signal s; and the noise
signal n; delayed by 7, so that s7(t) = s;(t — 7) and n] (1) =
n;(t— 7). To avoid multiple definitions due to boundary effects,
we consider the support of all signals to be [0, 7'+ L — 2], where
[0, T — 1] is the original support of the signals and L — 1 is the
maximum delay allowed. We define the decomposition using
the three projectors

Py, =1 {(s;)OSTSL—l} a7

(18)

Psn:—H{{( )1<J,<n,( I)1<i<m}OSTSL_1}. (19)

The computation of the projections again involves inversion of
Gram matrices. The Gram matrix corresponding to st is the
empirical autocorrelation matrix of s; defined by (R s, ) =
(57,87 s7'). The Gram matrix associated with P, has a symmetric
block—Toeplitz structure, where the blocks on the 7th diagonal
are the empirical autocorrelation matrix of the sources at lag 7
defined by (RSS(T))jjI = <Sj, 8})

C. Time-Varying Gains Allowed Distortions

When time-varying gains distortions are allowed, S¢arget 18
equal to s; multiplied by a slowly time-varying gain. We pa-
rameterize this gain as ¢(t) = Zgz_ol a,v(t —uT"), where v is
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a positive kernel (i.e., a window) of length I/ and 7" the hop-
size in samples between two successive “breakpoints.” When
v is a rectangular window and L' = 71", this parameteriza-
tion yields piecewise constant gains with breakpoints at u7",
but choosing a smoother kernel makes it possible to get more
smoothly varying gains. This gives Starget(t) = g(t)s;(t) =
25;01 ay X v(t —uT")s;j(t). Thus, Starger belongs to the sub-
space spanned by versions of s; windowed by the kernel v. Note
that this use of windowed source signals has no link with the
computation of local performance measures from windowed de-
composed signals in Section II-C. We emphasize again that the
decomposition of §; and the computation of energy ratios are
separate steps.

We define the windowed source signals (s?)ggugy_l and the
windowed noise signals (n{)o<y<v—1 of support [0, 7 — 1] by
s¥(t) = v(t — uT")s;(t) and ni'(t) = v(t — uT")n;(t). The
projectors for decomposition are given by

Py, =11 { (sy)ogugUA}

PS _H{( ,)1<]’<n 0<ulU— 1}

Psn _H{{( )1<]’<n (n?)lgigm}ogugU_l}' (22)

In order to guarantee the natural property Ps s; = s; (ie.,
SDR = +o0 as expected in the particular case where 55 = s;),

we enforce the condition that Z 20 Y v(t—uT") is a constant for
all . When this is verified, s; belongs to the subspace spanned
by (s} )o<u<r—1 because s; = ZU ! ;/Zu -0 Lot = uT?).

This condrtron always holds true when T" = 1, but other values
of T” may work depending on the kernel v. For example, if v is
a triangular window and L’ is a multiple of 2, then 77 = L'/2
also works.

(20)
2n

D. Time-Varying Filters Allowed Distortions

Finally, when time-varying filters distortions are allowed,
the decomposition of 5; is made by combining the ideas of
the two previous subsections. The estimated source Siarget
is expressed as a version of s; “convolved” by a slowly
time-varying filter. Using the notations of the previous subsec-
tions, this results in Starget(t) = Zf;é h(r,t)sj(t — ) =
Z Z“ o CruXV(t —uT")s;(t — 7). Thus, Starget belongs
to the subspace spanned by delayed versions of s; windowed
by the kernel v

We compute the windowed delayed source signals
(s;”)ogfg —1,0<u<v—1 and the windowed delayed noise
signals (n]")o<r<r—1,0<u<v—1 of support [0,T + L — 2]
by windowing delayed signals: s7*(t) = wv(t — u1")s](t)
and n]"(t) = v(t — «T")n](t). Note that the reverse order
computation (passing windowed signals through delay lines)
is not equivalent and results in other projections generally. We
define the decomposition by the projectors

P, ::H{(S;u)ogrgL—r,ogugU—l} (23)
Fs ::H{(S}—,u)lgj’gn,OS‘rSL—l,OgugU—1} 24

Fon ::H{{(S;'u) 1<j'<n? (n"m)lﬁiﬁm}o<T<L—1.o<u<U—1}'
(25)
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TABLE 1
PARAMETER VALUES USED FOR DECOMPOSITION (8-kHz SAMPLE RATE)
Allowed | Delays Time frames
distortion L v L T
TI Gain N/A N/A
TI Filt 256 N/A
TV Filt 64 Rect 1600 1600
TABLE 1I

EVALUATION OF AN INSTANTANEOUS 2 X 2 MIXTURE

Allowed | SDR (dB) | SIR (dB) | SAR (dB) || SSIR (dB)
Method

distortion | 81 So 51 5o | 51 So 51 So
JADE TI Gain 26 25 26 25|72 73 26 25

TFBSS  TI Gain 37 34 |37 34|73 73 37 34

IV. EVALUATION EXAMPLES

In order to assess the relevance of our performance measures,
we made tests on a few usual BASS problems. The separated
sources were either simulated from a known decomposition or
extracted from the mixtures with existing BASS algorithms.

In this section, we present the results of performance mea-
surement on three noiseless mixtures of three musical sources.
The sources are 16-bit sound files of 2.4 s, sampled at 8 kHz
(T = 19200) and normalized. s; is cello, sy drums, and s3
piano. The three mixtures are 16-bit sound files containing an
instantaneous 2 X 2 mixture, a convolutive 2 X 2 mixture, and
an instantaneous 2 X 3 mixture. These mixtures were chosen
because they have very different difficulty levels, and they act
as typical mixtures within the large amount of usual audio mix-
tures. We also chose some typical existing algorithms to sepa-
rate these mixtures to show that the performance measures are
relevant on “real life” data.

For each mixture and each algorithm, the (non quantized)
estimated sources are decomposed using different allowed
distortions and the performance measures are computed. The
results are summarized in Tables II-IV. The different kinds
of allowed distortions and corresponding decompositions are
denoted TI Gain, TI Filt, TV Gain, and TV Filt, respectively.
The values of the decomposition parameters are listed in Table I.
Their choice is discussed in Section V based on informal
listening tests.

The sound files corresponding to these examples are available
for listening on http://www.irisa.fr/metiss/demos/bsspert/. This
demo web page provides the sound files of the mixture x, the
sources s, the first estimated source 57, and also the sound files
Of Stargets Cinterfs €noises and ear¢ir from the decomposition
of 1. Sound files of 53, S35 and their decompositions are not
provided for the sake of legibility. We emphasize that listening
to these sounds and comparing with the related performance
figures is the best way to evaluate the meaningfulness of our
proposals.
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A. Instantaneous 2 x 2 Mixture

Our first example is a stereo instantaneous mixture of s; and
S2, obtained with the mixing matrix

0.5 1
A= { 1 0.5]

We solve this problem by estimating a demixing matrix with
two different ICA methods: by using non Gaussian distributions
and mutual independence of the sources with JADE [1], and by
finding zones in the time-frequency plane where only one source
is present with time-frequency blind source separation (TFBSS)
[8] (used with 64 time frames and 1024 frequency bins as input
parameters). The performance measures are shown in Table II
for TI Gain decompositions. Results with other decompositions
differ from less than 2 dB. Since the global mixing-unmixing
system WA is known, we also compute for comparison the
System SIR (SSIR) which is the power ratio between the two
first terms of (5).

As expected with sources estimated by time-invariant linear
demixing, no artifacts come into play: SAR = +o00 up to nu-
merical precision. The estimation error is dominated by inter-
ferences and SDR =~ SIR. Moreover, the SIR is higher for
TFBSS than for JADE. This result is corroborated by the fact
that the demixing matrix estimated with TFBSS is closer to the
true demixing matrix than with JADE. Also, as expected, the
SSIR is very close to the SIR, because the correlation between
the sources (s1, s2) = —0.0055 is small.

B. Convolutive 2 x 2 Mixture

Our second example is a convolutive mixture of s; and s
made with 256 tap filters. The problem is solved by a frequen-
tial domain ICA method using 256 subbands and separating the
mixture with JADE [1] in each subband. The usual “permutation
problem” [5] is encountered when building estimated sources
from extraction results in each subband. We test two methods
to address this problem: the method outlined in [5] and an or-
acle (i.e., choice of the optimal permutations knowing the true
sources). The corresponding algorithms are named frequential
ICA (FICA) or oracle frequential ICA (OFICA). Both methods
do not aim at recovering the sources s; and s, but their images
on the first channel a1; x s1 and a1 * s2. Thus, the estimated
sources may be at best filtered versions of the true sources. The
performance measures are shown in Table III for three different
decompositions. We compute again the SSIR from (5), with
‘WA now containing filters instead of gains.

Different conclusions arise depending on the decompo-
sition. The TI Gain decomposition results in low SDRs for
both methods and SDR ~ SAR. Many artifacts arise due to
forbidden (filter) distortions of the sources. On the contrary, the
TI Filt decomposition outputs a high SDR for OFICA and a
medium SDR for FICA with SDR = SIR. Artifacts are smaller
because filter distortions are allowed, and interferences are
larger for FICA than for OFICA, because the use of oracle in-
formation in OFICA prevents bad pairing of subbands. The TV
Filt decomposition leads to intermediate results. Short (64-tap)
filter distortions are allowed, but longer filter distortions are
not; thus, some of the filter distortions on the estimated sources
are counted toward artifacts. Again, the SSIR is very close the
SIR computed using the TI Filt decomposition, because the
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TABLE III
EVALUATION OF A CONVOLUTIVE 2 X 2 MIXTURE
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TABLE IV
EVALUATION OF AN INSTANTANEOUS 2 X 3 MIXTURE

Allowed
Method

SDR (dB) | SIR (dB) | SAR (dB) || SSIR (dB)

~ ~ ~ ~ ~ ~ ~ ~

distortion | s Se | 81 S2 | S So s1 So

Allowed
Method

SDR (dB) SIR (dB) SAR (dB)

~ ~ ~ ~ -~ -~ ~ ~ -~

distortion | 33 S 83 | §1 S2 83 |8y S22 83

TI Gain -1 -16 | 7 12 | -10 -16
FICA TI Filt 6 1416 17|19 17 6 16

TV Filt 3 -2 8 9 5 -1

TI Gain .10 -13 | 15 22 | -10 -13

OFICA TI Filt 10 16 |10 18 | 19 19 10 17

TV Filt 5 2 |15 10 5 -1

20

SIR (dB)
o

0 0.5 1 1.5 2
time (s)

100

50

percent

SIR (dB)

Fig. 1. Local SIR for §; estimated by FICA and TI Filt decomposition in the 2
X 2 convolutive mixture. Hanning windows of length 100 ms and overlapping
75 ms are used. The SIR is plotted against time in the upper plot and summarized
in a cumulative histogram in the lower plot.

correlation between delayed versions of different sources is
also small.

It is also interesting to study the evolution of the performance
measures across time. For example, Fig. 1 plots the local SIR for
51 (estimated with FICA) using TI Filt. We see that the actual
performance measure varies a lot, which cannot be explained by
a single global SIR.

C. Instantaneous 2 x 3 Mixture

Our third example is an instantaneous mixture of s1, so, and
s3 computed with the mixing matrix

092 1.40 1.05

AN 1036 130 2.36]"

To solve this problem, we represent the two mixture channels
in a domain where the sources exhibit a sparse behavior, and
then the mixing matrix and the sources are estimated by (non-
linear) clustering of the ratios of the representation coefficients
between the channels. Two algorithms are tested: a clustering
of the short-time Fourier transform (STFT) called DUET [12]
(using a 256-sample Hanning window and a 192-sample hop-
size for STFT computation) and a matching pursuit clustering
(MPC) [11] (using 10 000 Gabor atoms with truncated Gaussian
envelope). The performance measures are shown in Table IV

TI Gain 2 4 4115 9 29| 3 7 4
STFTC TI Filt 5 4 6 |14 7 19| 6 8 6

TV Filt 6 5 g8 (11 7 15| 8 11 9

TI Gain 4 8 15|19 27 314 8 15

MPC  TI Filt 5 9 16|13 17 27| 5 9 16

TV Filt 6 9 16|14 14 23| 7 11 17

for two different decompositions. Unlike in the previous exper-
iments, it does not seem possible to display any sort of “System
SIR” for the MPC algorithm, since the result of the separation
is not a linear function of the input sources. In a sense, this per-
fectly illustrates a situation where it is necessary to have at hand
performance measures such as the ones we define, that is to say
measures which do not rely on a particular type of separation
algorithm, but simply try to compare the estimated signals with
the target ones.

This time the choice of the decomposition has less influence
on the results. Both methods estimate the sources essentially
without filter distortions but with “burbling” artifacts due to
source overlap in the representation domain. Thus, SDRs are
low for both methods and SDR =~ SAR. Note that MPC leads
to better performance than DUET, particularly for §3. Indeed,
the use of an overcomplete dictionary in MPC makes the source
representations sparser and limits source overlap.

V. DISCUSSION

Before we conclude, let us summarize in this section the re-
sults of the evaluation examples. We discuss the relevance of
the proposed performance measures for algorithm evaluation
and comparison. Then, we describe how they could possibly be
modified to explain subjective auditory assessments.

A. Relevance for Algorithm Evaluation and Comparison

The main result of the previous section is that the SDR, SIR,
SNR, and SAR were found to be relevant for the evaluation
of an algorithm and the comparison of several algorithms. In-
deed, given a family of allowed distortions, the SIR and SAR
were shown to be valid performance measures regarding two
separate goals: rejection of the interferences and absence of for-
bidden distortions and “burbling” artifacts. Other experiments
proved that the SNR was also valid for a third goal: rejection
of the sensor noise. Finally, the SDR was shown to be valid
as a global performance measure in case these three goals are
equally important.

Another important result is that the measures were found to
depend a lot on the number of delays and time frames chosen
for decomposition. Experimentally, the more distortions are al-
lowed, the higher the SDRs are. More rigorously, when F and
F' are two families with F C F’, the SDR of a given estimated
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source S; is higher allowing distortions in ” than in . Indeed,
the projection subspaces verify { f(s;), f € F} C {f(s;), f €
F'}, and, thus, ||5; — P, ;]| is smaller allowing distortions in
F' than in F.

This confirms our main postulate that the evaluation of the
performance of an algorithm only makes sense given a family
of allowed distortions. This can be seen as a nice property if the
distortions allowed for the desired application correspond to one
of the families presented in Sections II and III with a precisely
known number of frequency subbands and time frames. How-
ever, this is annoying when one has no idea about which distor-
tions to allow. In that case, we cannot “recommend” a family
of allowed distortions more than another one: the “best” choice
really depends on the application.

Finally, an interesting result is that in the previous section, the
results of algorithm classification according to mean SDR were
always the same whatever decomposition was used. We make
the hypothesis that this is not a coincidence and that the clas-
sification order is rather independent of the family of allowed
distortions. Of course, this hypothesis is based on very few ex-
periments actually, but we think it would be interesting to vali-
date or infirm it using more data. If it was true, then algorithm
classification would be greatly simplified. Indeed, it would be
unnecessary to test many families of allowed distortions before
providing a global result: a single one would suffice.

B. Relevance Toward Subjective Performance Measures

Another interesting question is to study the relationship be-
tween the proposed measures and subjective auditory perfor-
mance assessments. In theory, this should be done using care-
fully calibrated psychoacoustical listening tests. We could first
ask the listeners how they describe the results with their own
words, and check whether they use synonyms of “interferences”
and “artifacts” or not. Then we could go on with more con-
strained tests, such as broadcasting pairs of results and asking
listeners if they hear more or less “interferences” and “artifacts”
in the first sound of each pair. Because performing these lis-
tening tests is not a trivial task, we give here only a few remarks
based on our own listening experience.

If we admit that the ear splits estimated sources into the same
four components than our analytical decomposition, we may
define interferences, noise and artifacts as “what I hear coming
from the other sources,” “what I hear coming from sensor
noise, ” and “what I hear to be burbling artifacts.” With this
definition of auditory performance measures, we remark that
the SIR, SNR, and SAR seem to be better related to the auditory
notion of interferences, noise, and artifacts using the TV Filt
decomposition. Indeed, decompositions using very few delays
and time frames are not always able to extract all the perceived
interferences inside ejntert but split them between ejper and
eartit- On the contrary, decompositions with too many delays
and/or time frames sometimes put “burbling” artifacts into
€interf and nothing into e,,¢ir. The parameters we chose for the
TV Filt decomposition (F' = 64 and L’ = 200 ms) appear to
be a good compromise in many experiments. When the TI Filt
decomposition is used, a higher number of delays (L = 256)
seems preferable. Of course, these choices cannot be proved
using physical or mathematical arguments, but readers may
check this partially by listening to the previous examples on
http://www.irisa.fr/metiss/demos/bssperf/.
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If we also admit that the ear associates energy prioritarily to
the true source rather than to interferences in the case where
some sources are similar, then the components Starget, Cinterfs
€noises and e,ir estimated by the “greedy” decomposition
of (9)—(12) should be closer to the perceptual components
than those estimated by the simultaneous decomposition of
(5). Indeed, the “greedy” decomposition scheme takes into
account similarity between sources as measured by correlation.
We think that this measures part of the perceptual similarity
between sources, but not all. For instance, two white noises
sound the same even when they are orthogonal.

Some other auditory properties cannot be explained by the
proposed measures. First, the high values of SIR, SNR, and SAR
have limited auditory signification. For example, the two instan-
taneous mixtures of Section IV-A have very different SIRs but
can hardly be distinguished. Also, the SDR does not measure
the total perceived distortion. In the case where §; is a slightly
lowpass filtered version of s;, then SDR ~ +o0 using TV Filt
decomposition but lowpass filtering is perceived as timbre dis-
tortion. This fourth kind of error (besides interferences, noise,
and “burbling” artifacts) could be dealt with using an additional
performance measure, such as Itakura—Saito distance or cepstral
distortion [16].

An interesting idea to mimic the auditory treatments would be
to pass the sources and noises through an auditory filter bank.
Then each estimated source could be decomposed on subspaces
spanned by the auditory subbands by handling differently si-
nusoidal and noise-like zones and by taking into account au-
ditory masking phenomena. Similar performance measures al-
ready exist in the fields of denoising and compression [13], [17].

VI. CONCLUSION AND PERSPECTIVES

In this paper, we discussed the question of performance mea-
surement in BASS. Given a set of allowed distortions, we eval-
uated the quality of an estimated source by four measures called
SDR, SIR, SNR, and SAR. Experiments involving typical mix-
tures and existing algorithms showed that these measures were
relevant for algorithm evaluation and comparison. With respect
to other existing performance measures, the main improvement
is that we do not assume a particular separation algorithm nor a
limited set of allowed distortions. Moreover, we evaluate sepa-
rately the amount of interferences, remaining sensor noise, and
artifacts, which is a crucial point for evaluation in underdeter-
mined mixtures.

Our performance measures are implemented within a
MATLAB toolbox named BSS_EVAL distributed online under
the GNU Public License [18].

The main application of this work is to rank existing BASS
algorithms according to their performance on the same test data.
To help this, we built a web database called BASS-dB [15] that
classifies the test mixtures according to the source extraction
subtasks [4]. These subtasks corresponds to different structures
of the mixing system defined by the number of sources and sen-
sors (2 x 2,2 X 5,5 x 5,7 x 5, etc.) and the kind of mixing
filters (gain, delay, gain + delay, live-recorded room impulse re-
sponses). BASS-dB already provides some test mixtures and per-
formance results, but we encourage people to feed it with their
own mixtures and results.

We hope the BASS community will consider this issue, so that
BASS methods can be compared within a shared framework.
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Among the results, the best BASS methods could be identified
and selected for further improvement, or objective difficulty cri-
teria could be defined to determine for example whether the dif-
ficulty in an underdetermined convolutive mixture rather comes
from convolution or from underdetermination. Our hypothesis
that algorithm classification results are rather independent of al-
lowed distortions could also be validated or infirmed.

Among the possible generalizations to this paper, we are cur-
rently studying the derivation of psychoacoustical performance
measures and performance measures for the similar BASS tasks
of source spatial image extraction and remixing [4], that also in-
volve listening to the extracted sources.
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