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Abstract—Knowledge of how many users are there in the
environment, and where they are located is essential for natural
and efficient Human-Robot Interaction (HRI). However, carry-
ing out the estimation of multiple Directions-of-Arrival (multi-
DOA) on a mobile robotic platform involves a greater challenge
as the mobility of the service robot needs to be considered when
proposing a solution. This needs to strike a balance with the
performance of the DOA estimation, specifically the amount
of users the system can detect, which is usually limited by
the amount of microphones used. In this paper, a lightweight
hardware system (based on a 3-microphone triangular system)
is used, and a fast multi-DOA estimator is proposed that is
able to estimate more users than the number of microphones
employed.

Index Terms—direction of arrival, service robots, triangular
array, lightweight, robust

I. INTRODUCTION

The problem known as multi-Direction-of-Arrival (multi-
DOA) estimation provides a unique challenge when being
carried out in a mobile hardware platform; such is the case of
service robots. However, it plays an essential part of a natural
Human-Robot Interaction (HRI), as it is important to know
from where the users are talking to the robot and how many
are there in the environment. From the user-experience point
of view, the human will feel the interaction as more ‘natural’
if the robot is facing him/her during the conversation.

From the technical point of view, knowing the direction of
the user in relation to the robot can benefit other system mod-
ules, as well as improve the quality of the HRI. For instance,
once the direction of the user is known, voice recognition
can be improved using directional noise cancellation [1]. In
addition, it is well known that face detection and recognition
provide rich information relevant to HRI: the identity of the
user, the direction the user is looking at, his mood, etc. [2],
[3]. However, such analysis is carried out by visual means,
and the user cannot always be expected to be in the line
of sight of the robot. Knowing the direction of the user by
sound alone, and facing the user accordingly, tackles this
issue straight on. Moreover, the robot may be expected to be
in a situation where several users are in the environment and
actively speaking to the robot, such as taking a food order or
while guiding a group of users in a tour. Knowing the amount
of users and from where are they talking to the robot, can
provide acoustic cues to separate several streams of audio
data from the environment based on the Direction-of-Arrival
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E-mail: caleb@turing.iimas.unam.mx, lpineda@unam.mx
For more contact information, see: http://golem.iimas.unam.mx

(DOA) of the various sound sources and provide the single-
source streams to the Automatic Speech Recognizer.

In addition, knowing the direction of the user in regard
to the robot is also a good first step towards localizing the
user in the environment. In a 3-dimensional polar coordinate
system, the horizontal angle (i.e. the direction of the user) is
one of three values that define a location (the other two being:
vertical angle and distance from origin). And the location of
the user is, in turn, another important variable in HRI. During
a human-robot conversation, the phrase “robot, come here”
may be emitted by the human. In this situation, even if the
phrase was recognized correctly, the robot may know that it
needs to move, but, because the term ‘here’ lacks context, it
will not know where to move.

Unfortunately, there are many challenges in the estimation
of the DOA of the sound source. Reverberation is prevalent
in the locations where a service robot is expected to be
(supermarkets, condominiums, etc.) and has been shown
to hinder considerably the effectiveness of current DOA
estimators [4]. Moreover, too many sound sources may
drown the acoustic environment, complicating the estimation
process. A sophisticated audio capturing system may be able
to overcome these issues, such as the one proposed in [5]
that used a 24-microphone 1-D array for precision. However,
the application landscape of service robots provides a unique
challenge for the multi-DOA estimation topic: a high amount
of microphones may be impractical to carry by many of the
currently-in-use service robots [6], [7], such as our in-house
robot, Golem, herein described.

Golem is a service robot built with a primary focus on
HRI. It is integrated by a cognitive architecture focused
on HRI, termed Interaction-Oriented Cognituve Architecture
(IOCA, [8]), which can take advantage of different types
of information interpreted from the world, including the
direction of the user. Because Golem is a conversational
robot, it is of interest that it is able to detect and carry out
conversation with several users at any point. This implies that
the system that is to be estimating the multiple DOAs of the
environment, needs to be sufficiently light on the hardware
side for the robot to carry and not hinder its mobility, but
robust enough in the software side to handle different types
of noise and disturbances, as well as simultaneous speech
from various sources. Moreover, such a system should be
able to estimate the direction of the users in a -179◦– 180◦

range, as no assumption can be made of the location of the
users in the environment, and fast enough to do so with small
utterances from the users. It is important to note, then, that
the Multi-DOA Estimation problem is further complicated in
a mobile robotic platform, and provides an interesting and
unique challenge for current techniques.

The paper is organized as follows: Section II is a brief
review of current algorithms that aim to estimate the direction
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of one or more sound sources; Section III describes the pro-
posed system; in Section IV, the results of the evaluation of
the system on a service robot placed on a highly acoustically-
complex scenario are provided; and in Section V, conclusions
and future work are discussed.

II. BACKGROUND ON SOURCE DIRECTION-OF-ARRIVAL
ESTIMATION

Estimating a Sound Source Direction of Arrival (DOA) is
a well written-about topic in Signal Processing. It has been
proven useful in applications ranging from fault monitoring
in aircrafts [5], to intricate robotic pets [9], to close-to-life
insect emulation [10]. In addition, the principles employed in
DOA estimation have been applied in the design of hearing
aids [1].

Having two audio sensors (i.e. microphones), the Inter-
aural Time Difference (ITD) is the delay of a sound from
one microphone to the other. It is usually calculated as it
being the shift value with the highest correlation measure of
the Cross-Correlation Vector (CCV) between two captured
signals. It is one the features most used for DOA estimation,
particularly with two-microphone arrays, as in [11] where it
provided limited results. The ITD yields a clear relation to
the direction of the source, described in Equation (1).

θ = arcsin

(
ITD · Vsound
Fsample · d

)
(1)

where θ is the DOA angle; ITD is the Inter-aural Time
Difference in number of samples; Vsound is the speed of
sound (∼ 343 m/s); Fsample is the sampling frequency; and
d is the distance between microphones.

The Inter-aural Intensity Difference (IID) is the difference
in magnitude between both microphones and can also be
used for DOA estimation, although a training stage is usually
necessary for it to be useful, as it was observed in [7].

In [4], the concept of Inter-aural Coherence (IC) is intro-
duced, which is the highest correlation measure of the CCV.
If a high IC is present, the signals are deemed coherent and,
thus, an analysis using ITD and/or IID can proceed. This
methodology was implemented in [9], and it was observed
that it didn’t improve DOA estimation when dealing with
complex signals (e.g. more than one source, reverberation
present, etc.).

A popular methodology for DOA estimation in robotic
platforms is to use a microphone array with, usually, two
microphones, as it is proposed in [12]. The reasoning behind
using only two microphones in robotic platforms ranges from
that of practicality (it is lightweight) to that of biological
similarity [13], where the robot is meant to be the most
human-like possible [14]. However, doing so comes with four
main problems.

The first issue is that the relation between the ITD and
the resulting DOA is not linear. In Figure 1, the DOA is
plotted against the ITD, and it can be seen that in the -
50◦–50◦ range, the relation between both seem close-to-
linear. However, in the outer ranges, the relation becomes
exponential. This causes major errors when estimating angles
that are located in the sides of the robot [12].

The second is that, as it can also be seen in Figure 1, a 2-
mic array only estimates DOAs in the -90◦– 90◦ range. This
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Fig. 1. DOA (or Angle) in degrees vs. ITD (or Delay) in # of samples.

can be surmounted by implementing ‘artificial ears’ that can
detect if the sound source is coming from the front or back
of the robot, but it has been proven impractical [15]. This can
also be tackled by a two-phase strategy: a first pair of signals
can be used to estimate an initial DOA, the robot can then
rotate briefly, and then another pair of signals can be acquired
to estimate a second DOA. A comparison between the DOAs
results in an angle estimation in the -179◦– 180◦ range, but
has its own set of issues: it requires considerably more time
than when using one DOA estimate, the required rotation
may hinder navigational requirements, and the user may be
moving as well, rendering the DOA comparison mute.

The third problem is that the estimation of the ITD,
based on the calculation of a CCV, can be very sensitive
to reverberations and other noise sources [13] (pp. 213-215).
This may result in significant errors in the DOA estimation
without any form of redundancy.

And finally, a 2-microphone array has rarely been used for
multi-DOA estimation, as it provides sparse information from
the environment. Adding more microphones generalizes the
strategy, as a 2-microphone array is an instantiation of classic
reverse beamforming techniques [5], which create a noise
map of the environment, and then, by using metrics such as
energy levels, propose possible sources of sound and their
respective DOAs. However, to obtain a high resolution noise
map, and, thus, a precise DOA estimation, beamforming
techniques require a large quantity of microphones, which
is impractical for mobile robotic platforms. In addition, the
more popular 1-dimensional (1-D) beamforming methodolo-
gies are also bounded by the first three problems described
earlier, and 2-D arrays can be cumbersome to the mobility
of the robot.

The topic of how many microphones to use in a service
robot is intrinsic to the nature of the application, as it is
important for the audio capture system to be mobile. A many-
microphone solution may provide good results, such as the
one proposed in [6] where the sources were separated from
each other, in order to enhance speech recognition, and as a
preamble for DOA estimation. However, it required an array
of 8 microphones positioned in a cube-like manner to work,
doubling the height the robot occupied without it.

The other side of the argument is to use one microphone,
such as the work described in [15], where the DOA of
a source was able to be estimated by implementing an
‘artificial ear’. Unfortunately, the sound was required to be
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known a priori and any modification to the ear (even its
location in relation to the microphone) required re-training.

A popular technique is the Multiple Signal Classification
algorithm (MUSIC) [16], which is able to detect the Direc-
tion of Arrival (DOA) of as many sources as one less the
available microphones (e.g. 1 source with 2 microphones, 2
sources with 3 microphones, etc). It does this by projecting
the received signals in a DOA subspace, based on their
eigenvectors, similar to Principal Component Analysis. It
was applied in [17] with good results, although it has been
observed that its performance decreases considerably in the
presence of reverberation [13] (pp. 169).

In this paper, a technique is proposed where a lightweight
hardware system (based on only 3 microphones) is able to
estimate multiple DOAs, as much as 4 simultaneous sources.

III. PROPOSED SYSTEM

The proposed system is comprised by three modules:
1) Audio Acquisition. Obtains audio data from the micro-

phones and provides it to the Initial DOA Estimation
module.

2) Initial DOA Estimation. Estimates, from the audio data,
an initial, fast, but reliable DOA estimation of a single
sound source in the environment.

3) Multi-DOA Tracking. Carries out dynamic clustering of
the incoming DOA estimations, and proposes clusters
of DOAs as sound sources.

In the following sections, the aforementioned modules will
be described in more detail.

A. Audio Acquisition

As it will be described in the following section, the hard-
ware is comprised by three omnidirectional microphones,
and, because the DOA estimation is based on an ITD mea-
sure, it requires that the audio from the three microphones
be acquired simultaneously as well as in real-time. For
this purpose, the JACK Audio Connection Toolkit [18] was
employed, as it can sample at rates of 44.1 kHz and 48 kHz,
providing a good resolution for ITD calculations, and it does
so without slowing down the other robotic software modules.

B. Initial DOA Estimation

The Initial DOA Estimation is carried out by the technique
described in [19]. It avoids the problems that arise when
estimating a DOA using 1-D microphones arrays (described
in Section II), and maintains a relatively light hardware setup:
an equilaterial-triangular-array, as it is shown in Figure 2. To
this effect, the system obtains a set of 3 simultaneous sample
windows.

L R

F
Speaker

Fig. 2. Hardware setup of the proposed system.

The audio data is passed through various serialized sub-
modules: a band-pass filter, a Voice Activity Detection stage,
multi-ITD estimation, a redundancy check, and, finally, a
final DOA estimation. The flow of data is summarized in
Figure 3.

Fig. 3. Initial DOA Estimation flow of data.

1) Multi-ITD Estimation, Redundancy Check, & Angle
Calculation: Three possible ITDs can be calculated using
cross-correlation between sample window R and L (IRL), L
and F (ILF ), and F and R (IFR). 2 DOAs are calculated from
each ITD: one using Equation (1), and another shifting the
first DOA to its possible counterpart on the ‘backside’ of the
microphone pair.

The three DOA pairs are used to check if the three ITDs
are from a sound source located in the same angle sector.
To do this, the average of the differences between the DOA
pairs is calculated using Equation (2).

Cpqr =
|Dp

RL −Dq
LF |+ |D

q
LF −Dr

FR|+ |Dr
FR −Dp

RL|
3

(2)
where a D i

xy is the ith DOA of the DOA pair from Ixy .
A set of 8 Cpqr are calculated, where p, q, and r can be
either 0 or 1, depending on which DOA of the DOA pair is
being compared. Of the 8, the minimum is considered as the
incoherence of the sample window set.

A pre-specified incoherence threshold (measured in de-
grees of separation between the DOAs; a value between 30◦

and 40◦ provided good results) is used to reject sample win-
dow sets. A high incoherence implies that the sample window
set either has too much reverberation to be trustworthy for
further processing or that it contains more than one sound
source. This rejection step serves as a type of redundancy
check per sampling window set.

If all of the DOAs are coherent/redundant with each other,
a preliminary DOA value (θm) can be calculated using
Equation (3),

θm = arcsin

(
Imin · Vsound
Fsample · d

)
(3)

where Imin is the ITD with the lowest absolute value
of the three (IRL, ILF , IFR). θm is then shifted to the
appropriate angle sector in relation to the orientation of the
robot, resulting in the final DOA value (θ).

Using Imin ensures that θm is calculated from the micro-
phone pair that is the most perpendicular to the source. This
means that the resulting θ is always estimated using a θm
inside the -30◦– 30◦ range (well within the close-to-linear
-50◦– 50◦ range), because of the equilateral nature of the
triangular array. Meaning that all through the -179◦– 180◦

range, there is always a close-to-linear ITD-DOA relation.
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Because of both the redundancy check and the close-to-
linear relation, the maximum error of this system can be
known beforehand using Equation (4).

|error◦
max| = arcsin

(
I>30◦ · Vsound
Fsample · d

)
−arcsin

(
I<30◦ · Vsound
Fsample · d

)
(4)

where I>30◦ and I<30◦ are the ITDs that provide the
closest ceil and floor measurements, respectively, to 30◦. For
example, sampling at 44.1 kHz and with the microphones
spaced at 18 cm, a maximum error of ±2.8747◦ can be
expected. In the same set of circumstances, when using a
2-Mic 1-D array, the maximum expected error, which occurs
when the sound source is close to either side of the robot, is
of ±15.0548◦.

2) Voice Activity Detection: To activate the ITD estima-
tion, Voice Activity Detection (VAD) needs to be carried out.
Because the robotic platform may be changing position and
environments, the VAD system is required to adjust itself
to the environment. To this effect, a simple VAD algorithm
is proposed that is based on adjusting the baseline of the
environmental noise to any sound that is emitted with a pre-
specified delay.

Two history buffers of sample window energy values are
kept in memory, and shifted based on the specified delay
(2 seconds provided good results). One is always being re-
freshed by new sample window energy values (avg buffer ),
and is used to calculate the current average energy value
(avg value). The other buffer (min buffer ) is used to calcu-
lated the current average minimum value (min value), and is
refreshed with a new energy value if it is less than the current
min value or if the difference between it and avg value is
less than the difference between avg value and min value
(which would mean that its value is close to the values of
min buffer ).

The VAD is triggered if the energy value of the cur-
rent sample window is greater than the average between
avg value and min value by a multiplicative threshold (1.5
provided good results).

3) Band-Pass Filter: A general infinite impulse response
band-pass filter is used at the beginning of the process, to
remove general ambient noise that is outside the human
speech frequency bands. The filter model is described in
Equation (5):

yn = 0.0348 · xn − 0.0696 · xn−2 + 0.0348 · xn−4 +

3.2680 · yn−1 − 4.1247 · yn−2 + 2.3984 · yn−3 −
0.5466 · yn−4 (5)

where yi is the output of the filter, xi is the input, and n
is the number of the current sample.

It was observed that this filter made the system less
sensitive towards unwanted noises that should always be
ignored, such as high-pitch sounds, microphone hiss, etc.
Concurrently, it did not degrate the sensitivity of the system
towards human speech.

C. Multi-DOA Tracking

The DOA estimator described in the previous section only
provides results when there is considerable confidence of
only one sound source being detected in a small sample
window (up to 100 ms). It has been seen that, even in
simultaneous-speech, users are not expected to talk with
a 100% overlap over each other. In fact, when analyzing
speech recognition, ‘spurts’ of non-overlapping speech has
been considered to the order of 500 ms [20]. For example,
in Figure 4, it can be seen how two randomly chosen tracks
from the DIMEX corpus [21], when overlayed over each
other, still have some portions with no overlap between them.

Fig. 4. Non-overlapping simultaneous speech.

This means that the DOA estimator described in the
last section is able to provide reliable results of single
sources even in multi-user scenarios. However, because of
the stochastic nature of the presence of single user sample
windows in the simultaneous audio timeline, such results
would be provided in a sporadic fashion. To this effect, a
simple tracking system is proposed that dynamically clusters
similar DOAs into candidate sound sources.

The tracker maintains in memory the last DOAs provided
by the initial DOA estimator in a specific time frame. When a
new DOA is estimated, the tracker carries out the following:

1) If the new DOA is not ‘close enough’ to the average
DOA of any current cluster (good results were obtained
when using 5◦ for clusters with one DOA, 10◦ for
clusters with more than one DOA, as thresholds for
closeness), or there are no clusters in the environment:
create a new cluster with the new DOA.

2) If it is close enough to a current cluster, add the new
DOA to it, and re-calculate its new average DOA.

If a DOA is too old (10 seconds old provided good results),
it is ‘forgotten’ by removing it from its respective cluster and
re-calculating its average DOA.

Every cluster is considered a candidate sound source, until
it has a pre-specified number of DOAs attributed to it (2
DOAs provided good and fast results), when it becomes
a ‘sound source’ and its average DOA becomes its main
estimated DOA.

IV. TRIALS & RESULTS

The test scenario was as follows: three microphones, 20
cm. apart from each other, were installed in the upper base
of the Golem robot. In turn, Golem was placed in a large
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room with a high sonic complexity (considerably reflective
materials, with a low ceiling, hard floor, cement columns
in the middle, and moderate reverberation). Two electronic
speakers emitting, simultaneously, random recordings from
the DIMEX corpus [21] for 20 seconds, were placed at 1.5
meters from the robot, one at 0◦, another at -45◦.

The Audio Acquisition module was sampling at 48 kHz,
and providing sample windows of 4800 samples (100 ms).
The buffers in the VAD were 10 energy values long, and
considering a 2 second delay for adjustment to the envi-
ronment noise. The DOA estimator had a 40◦ incoherence
threshold (any sample window set with a higher incoherence
was rejected). The multi-DOA tracker considered a new DOA
as part of a cluster with more than one DOA if it was 10◦ or
closer to its average DOA; if the cluster only had one DOA,
5◦ or closer was considered as part of the cluster. The results
of the test are shown in Figure 5.
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Fig. 5. Tracking 2 simultaneous sources (2 electronic speakers).

As it can be seen, the tracking system performed well with
2 sound sources (in the Figure referred to as ‘Users’).

The system was then tested with an additional simultane-
ous source: a human emitting continuously the phrase “golem
i am over here (pause)” placed at 35◦. The results of this
scenario are shown in Figure 6.
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Fig. 6. Tracking 3 simultaneous sources (2 electronic speakers, 1 human).

As it can be seen, the system tracked the human and one
of the electronic speakers (placed at -45◦) well. The other of
the two electronic speakers (placed at 0◦) was ‘missed’ for
a moderate amount of time, however, in any other moment,
the tracking system was able to track it considerably well.

To assess if the ‘missed’ tracking issue was with the
electronic speaker itself, and, in addition, to observe if the
tracker is able to better identify humans than electronic
speakers, an additional simultaneous source was added to
the environment: another human emitting continuously the
phrase “one two three (pause)” placed at -100◦. The results
of this final scenario are shown in Figure 7.
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Fig. 7. Tracking 4 simultaneous sources (2 electronic speakers, 2 humans).

And, as it can be seen, the electronic speaker placed at
0◦ was again ‘missed’ in a similar fashion than in the 3-
user scenario, which suggests a failure with the specific
characteristics of the electronic speaker (positioning, volume,
frequency enveloping of speech, etc.). However, both humans
were tracked very well, and the electronic speaker placed at
-45◦ was tracked relatively well. These results imply that
the proposed system is well suited for tracking simultaneous
human speech. Also, and more significantly, for a moderate
amount of time, the 4 simultaneous sources were being
tracked well. Considering that the system only employs 3
microphones, it showed that it was able to monitor more
sources than the number of microphones present, a feat
that the popular approach known as MUSIC is unable to
accomplish [16].

The authors would like to remind the reader that the
setting of the test scenario were considerably harsh: the
sonic complexity of the room was high, there was moderate
reverberation, the human user placement can be expected
to be inconsistent, and no reverb adequation was carried out.
When considering all of this, the proposed system has shown
it is an adequate solution to the multi-user DOA estimation
problem in a robotic mobile platform.

V. CONCLUSION & FUTURE WORK

Human-Robot Interaction benefits from a rich perception
of the world. Having the robot orient itself towards the
user during a conversation enhances HRI from the point
of view of both the user and the robot: the ‘naturality’ of
the conversation is improved, and the acquisition of more
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information from the user (face recognition, voice context,
etc.) is simplified. To do this, however, the direction of the
user is required. Because a conversation is carried out via
voice, it is appropriate that the direction of the user be
estimated by sound analysis.

In addition, multi-user scenarios are common in the day-
to-day dynamics that a service robot is expected to con-
front. However, the multi-DOA estimation problem is further
complicated when applied in mobile robotics, as it presents
a unique challenge: the mobility of the robot should not
be compromised, thus the hardware should be lightweight
(limited amount of microphones), but it should be robust
and flexible enough to be able to carry out DOA estimation
in acoustically complex settings.

In this paper, a 3-microphone system was proposed, built
upon earlier work published by the authors. It provides a
reliable Multiple Direction-of-Arrival estimation, and it was
shown that it was able to track more users than the amount
of microphones used. Moreover, it did so while being light
enough to be carried by a service robot. It also provided a
robust estimation in the presence of moderate reverberation
and high sonic complexity.

However, during the evaluation, were human speech and
electronic-speakers were emitting simultaneously, it was
observed that the human speech overcame the electronic
speakers. Although this might be attributed to specific char-
acteristics of the electronic speaker (as its tracking performed
similarly in two different scenarios, regardless of audio data),
it was observed that human speech was consistently tracked
well, which is something desirable as it will be employed
with real-life human speech.

This system is planned to be a preamble for a consequent
module that will perform online source separation based
on the DOA of the source, which will then provide the
Automatic Speech Recognizer with speech data. This will
result in a multiple-simultaenous-speech recognition, with a
small hardware setup and redundant estimation.
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