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ABSTRACT
Independent Component Analysis (ICA) is widely used
for Blind Source Separation in generic spectra which
are themselves obtained from sensors that can be de-
calibrated or are too sensitive to ambience changes. This
usually results in frequency displacement or lag that ICA
will face during its source extraction. Experiments were
done that show that ICA is not well-equipped to handle
such displacement, and that it only is able to extract the
same components as before being lagged given only an
insignificant amount of displacement. Other experiments
showed that the amount of lag that ICA can handle varies
depending on the width of the components intended to be
extracted.

Keywords: Independent Component Analysis, Shift,
Spectral Analysis

1 INTRODUCTION
Independent Component Analysis (ICA) has been used
extensively throughout different areas of the industry
[2, 3]. One of its most important applications is the
identification of components of a mixture produced by a
plant, by analysing an energy spectrum that was measured
from the mixture. This is fundamental for quality control,
where ICA can aid the process of confirming the presence
of important materials inside the mixture, and by identify-
ing the presence of unwanted materials.

Unfortunately, the spectra that ICA analyses may suf-
fer from frequency displacement, or lag. It has been
shown that such phenomenon often occurs in real life ap-
plications as a result of poor sensor calibration and/or ex-
ternal influences [4]. The temporary solution for this of
constantly re-calibrating the spectral sensor is known to
be costly, as expensive materials and plant downtime are
necessary [4]. The approach of modelling the external in-
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fluences as a mean to counter it [5] is unrealistic, as infor-
mation (such as concentration of each component, temper-
ature at moment of sampling, etc.) needed to build such a
model is rarely available. In addition, because frequency
displacement may appear in small quantities, the moni-
tor in charge may not be even aware of such occurrence.
Adding all of this together, lagged measured spectra ob-
tained from the industry is very common, so the possibil-
ity of the spectrum being shifted needs to be accounted for
as part of its analysis.

It is then important to investigate what are the effects
of applying ICA to spectra that are known to be lagged.
And if such effects are detrimental, understanding them
would be a first step towards making ICA robust against
them.

In this paper, ICA will be put to the test with a se-
ries of artificial data sets, who were subjected to different
amount of lags. This will be done to find out what is the
range of lag that ICA can handle before obtaining a set
of components different from the set it obtained from the
same non-lagged spectra.

Section 2 will give a brief background of ICA, center-
ing around the FastICA algorithm. Section 3 explains the
methodologies used for creating the test data and how it
was artificially lagged. Section 4 provides details about
the several tests and experiments done with the FastICA
algorithm. Finally, Section 5 gives some conclusions and
a brief discussion about the results given in the experi-
ments.

2 BACKGROUND ON INDEPENDENT
COMPONENT ANALYSIS AND SHIFT

The objective of this section is to refresh the memory of
the reader towards how ICA works, as it is essential for
understanding how a lagged spectrum may affect its per-
formance. ICA was first introduced by Comon in 1994
[1] and it is one of the principal methodologies behind
Blind Source Separation (BSS), the objective of which is
to obtain a set of sources from analyzing only a group of
mixtures of those sources.

Its main assumption is that the sought-after sources are
independent. This assumption is viable, as in many appli-
cations the presence of one component in a mixture is not
dependent on the presence of another. Independence be-
tween two sources, in the practical sense, means that there



is little or no mutual information between them. Hyväri-
nen in 1997 proposed a way to measure it and called it
negentropy [11]. This measure of independence was used
[12] as an objective function in a fixed-point iterative algo-
rithm to find an appropiate de-mixing matrix, with which
estimates of the sources could be extracted from the mix-
tures. The estimates, because of the use of negentropy,
have very little mutual information between them, in ef-
fect being independent (thus, called Independent Compo-
nents, or ICs). This gave birth to the FastICA algorithm,
which is one of the most popular implementations of ICA
and has been used extensively in different areas of science
[6, 7, 13].

In a tutorial paper about ICA, Hyvärinen wrote that
“Actually, and perhaps surprisingly, it turns out that [to
solve the ICA problem] it is enough to assume that
[the sources...], at each time instant t, are statistically
independent.”[13] This implies that the sources need to
be ‘aligned’ throughout the different mixtures for such in-
dependence to be measured accurately. If this alignment
is not present, incorrect measures of independence will
arise, and one source that is lagged in one mixture and not
in another may be considered as two independent compo-
nents instead of one.

3 METHODOLOGY

FastICA was applied to a series of artificial data sets cre-
ated from a set of simulated spectral components, acting
as a set of reference spectra. For ease of visualisation,
each spectral component in the reference set was made up
of just one ‘peak’. Such peaks were created using (1).
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where c is one component; ci is the energy at fre-
quency fi; h, p, and w are the height, frequency location,
and width of the peak respectively. These peaks could
then be artificially lagged by any amount l by simply shift-
ing the information from fi to fi+l. All of the components
created are simulating a frequency spectrum, so all loca-
tions will be referred to as Hertz. The spectra have a fre-
quency resolution of 0.01 Hz per frequency point.

When creating a data set, a set of random concen-
trations between 0.2 and 1 were created. If the data set
was meant to be lagged, a maximum lag (max lag) was
defined to identify it, and a set of random lags between
[0,max lag ] was created for that data set. To create the
data set, (2) was applied.

dk =
∑
m

cm ∗ lag(Sm, lm) (2)

where dk is the kth spectrum in the data set; cm and
lm are the randomly-generated concentration and lag, re-
spectively, that are applied to the mth component in the
reference spectra set S. The lag function shifts the infor-
mation of the spectrum that is fed to it from fi to fi+lm .

4 EXPERIMENTS & RESULTS
4.1 Experiment 1: Lag Effect on FastICA

Two components were used: one at 15 Hz with a width of
20 Hz, and another at 80 Hz with a width of 30 Hz shown
in Figure 1a. Two data sets were created using these com-
ponents as reference spectra, having each 1000 signals us-
ing the same concentrations. However, one data set was
lagged at a maximum of 1 Hz, while the other was not.
The ICs identified from the non-lagged data set are shown
in Figure 1b, and the ones identified from the lagged data
set are shown in Figure 1c.
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(a) Components used.
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(b) ICs identified without lag.

0 10 20 30 40 50 60 70 80 90 100
!2

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100
!1

0

1

2

3

4

(c) ICs identifed with a max. lag of 1 Hz.

Figure 1: Results of first experiment.

Figure 1c in reality is showing 6 components; they are
grouped together like this for visualization sake.



4.2 Experiment 2: Maximum Lag Handled by
FastICA

Using the same sources as in Experiment 1, different data
sets were created, applying a different maximum lag to
each one, ranging from 1 Hz to 0.01 Hz; FastICA was
applied to all of them. Figure 2 shows, going from left to
right, the ICs identified when applying a maximum lag of
0.1 Hz in Figure 2a, a maximum lag of 0.03 Hz in Figure
2b, and finally of 0.02 Hz in Figure 2c. Comparing the
ICs shown in the latter to the ones shown in Figure 1b,
that were obtained from non-lagged data, it is clear that
FastICA is able to identify the correct ICs only applying a
maximum lag of 0.02 Hz or less.

0 10 20 30 40 50 60 70 80 90 100
!1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100
!1

0

1

2

3

4

(a) ICs identifed with a max. lag of 0.1 Hz.
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(b) ICs identifed with a max. lag of 0.03 Hz.
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(c) ICs identified with a max. lag of 0.02 Hz.

Figure 2: ICs obtained at different lags.

4.3 Experiment 3: Influence of Component Width

As it can be seen in Figure 2, when applying a maximum
lag of 0.03 Hz, only the source with its peak at 80 Hz
(which has a width of 30 Hz) was identified properly. To
test if the proper identification of a lagged component is
dependent of its width, another test was developed. Four
sources were created and are shown in Figure 3a: each
with a width of 40 Hz, 30 Hz, 20 Hz and 10 Hz, respec-
tively. 10 data sets were created, each having 1000 sig-
nals, and a different maximum lag was applied to each
one, from 0.01 Hz to 0.1 Hz; FastICA was applied to each
data set.
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(b) Lag plotted against width.

Figure 3: Sources and lag/width plot.

Figure 3b shows an area, the border of which was ob-
tained by plotting the maximum lag applied to a data set
against the width of the widest component that was not
properly identified. Any point residing in this area is de-
scribing a situation in which FastICA will not identify a
component properly.

5 CONCLUSIONS & DISCUSSION
It has been shown that if a component suffers from mod-
erate amounts of lag (which in real life, can be caused by
sensor de-calibration), Independent Component Analysis
and, more precisely, the FastICA algorithm, is unable to
extract the same components that it does from non-lagged
data. No other changes to the data, other than lagging it,
was implemented, making the presence of lag the only re-
sponsible for making FastICA not identify the proper ICs.



The results in Experiments 2 and 3 show, however,
that FastICA was able to properly identify the ICs in cer-
tain circumstances; basically, if the lag was small enough,
and the component peaks were wide enough. As in other
machine learning and advanced statistical methods, ICA
considers each frequency point of a spectrum as if it were
a variable, the values of which and their variation through-
out the data set are key at extracting the needed informa-
tion (in this case, the ICs). When lagging it, though, the
information of one variable is passed onto others, so ICA
is not able to follow the correct variation of the values
of one variable, as they are now spread out into several.
However, if the lag is small enough, the information is
passed on to very close by neighbours of each variable,
and, if the peaks are wide enough, the variation of their
values are very similar, giving ICA almost the same in-
formation as if the data would not have suffered from any
lag.

Nonetheless, it is important to note that it is still a very
small amount of lag for such wide peaks for FastICA to
identify the proper ICs. A lag of 0.07 Hz for a 40 Hz wide
peak can be considered insignificant in most applications.
This proves that ICA, particularly the FastICA implemen-
tation, is very fragile towards frequency displacement.
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