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A n  Algorithm For Linearly Constrained 
Adaptive Array Processing 

OTIS LAMONT FROST, 111, MEMBER, IEEE 

Abstract-A constrained least mean-squares algorithm has been 
derived  which is capable of adjusting an array of sensors in real time 
to respond  to  a signal coming  from  a desired direction while dis- 
criminating against noises coming  from  other  directions.  Analysis 
and  computer simulations confirm  that the algorithm is able to 
iteratively  adapt  variable weights on the taps of the sensor array to 
minimize noise power in the array  output. A set of linear  equality 
constraints on the weights maintains a chosen frequency  characteris- 
tic  for the array in the direction of interest. 

The array  problem  would be a classical constrained least-mean- 
squares  problem  except that the signal and noise statistics are as- 
sumed unknown a priori. 

A geometrical  presentation shows that the algorithm is able to 
maintain the constraints  and  prevent the accumulation of quantiza- 
tion  errors in a digital implementation. 

T 
I.  INTRODUCTION 

HIS  PAPER describes a simple  algorithm  for  adjusting 
an  array of sensors  in  real  time  to  respond  to a desired 
signal while discriminating  against noises. A  “signal” 

is  here defined as a waveform of interest which arrives  in 
plane  waves  from a chosen  direction (called the  “look  direc- 
tion”).  The  algorithm  iteratively  adapts  the  weights of a 
broad-band  sensor  array  (Fig. 1) to minimize noise power a t  
a t  the  array  output while maintaining a chosen frequency 
response in  the look direction. 

The  algorithm, called the  ‘Constrained  Least  Mean- 
Squares” or “Constrained  LMS”  algorithm,  is a simple 
stochastic  gradient-descent  algorithm which requires  only 
that  the direction of arrival  and  a  frequency  band of interest 
be specified a  priori. In  the  adaptive process, the  algorithm 
progressively learns  statistics of noise arriving  from  directions 
other  than  the look direction. Noise arriving  from  the look 
direction  may be filtered out  by  a  suitable choice of the  fre- 
quency  response  characteristic  in that  direction,  or  by  exter- 
nal  means. Subsequent processing of the  array  output  may 
be done  for  detection or classification. 

A major  advantage of the  constrained  LMS  algorithm  is 
that  it  has  a  self-correcting  feature  permitting  it  to  operate 
for arbitrarily long periods of time  in  a  digital  computer  im- 
plementation  without  deviating  from  its  constraints  because 
of cumulative roundoff or truncation  errors. 

The  algorithm  is  applicable  to  array processing problems 
in geoscience, sonar,  and  electromagnetic  antenna  arrays  in 
which a simple  method  is  required for adjusting  an  array  in 
real time  to  discriminate  against noises impinging on the 
array sidelobes. 
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Fig. 1.  Broad-band antenna array and equivalent processor  for signals 
coming from the look direction. 

Previous Work 
Previous  work  on  iterative  least  squares  array processing 

was  done  by  Griffiths [l]; his  method uses an  unconstrained 
minimum-mean-square-error  optimization  criterion  which 
requires a priori knowledge of second-order  signal  statistics. 
Widrow,  Mantey,  Griffiths,  and  Goode [2 ]  proposed  a  vari- 
able-criterion [3] optimization  procedure  involving  the use 
of a  known  training  signal;  this  was  an  application  and  exten- 
sion of the  original  work on adaptive  filters  done  by  Widrow 
and Hoff [4]. Griffiths  also proposed a constrained  least 
mean-squares processor not  requiring a  priori knowledge of 
the  signal  statistics [SI; a new derivation of this processor, 
given in [ 6 ] ,  shows that  it  may  be  considered  as  putting 
“soft”  constraints on the processor via  the  quadratic  penalty- 
function  method. 

“Hard” (i.e., exactly)-constrained  iterative  optimization 
was  studied  by Rosen [7]  for  the  deterministic case. Lacoss 
[8], Booker et al. [g], and  Kobayashi [ lo ]  studied  “hard”- 
constrained  optimization  in  the  array processing context  for 
filtering short  lengths of data. All four  authors used gradient- 
projection  techniques [ l l ] ;  Rosen and Booker correctly  indi- 
cated  that  gradient-projection  methods  are  susceptible  to 
cumulative roundoff errors  and  are  not  suitable  for long runs 
without  an  additional  error-correction  procedure.  The  con- 
strained LMS algorithm  developed  in  the  present  work  is 
designed to  avoid  error  accumulation while maintaining  a 
“hard”  constraint;  as  a  result,  it  is  able  to  provide  continual 
filtering  for  arbitrarily  large  numbers of iterations. 

Basic  Principle of the Constraints 
The  algorithm  is  able  to  maintain  a chosen frequency 

response in  the look direction while minimizing  output noise 
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power  because of a  simple  relation  between  the  look  direction 
frequency  response  and  the  weights  in  the  array of Fig. 1. 
Assume that  the look direction  is  chosen  as  the  direction 
perpendicular  to  the  line of sensors. Then  identical  signal 
components  arriving on a  plane  wavefront  parallel  to  the  line 
of sensors  appear a t   the  first  taps  simultaneously  and  parade 
in  parallel  down  the  tapped  delay  lines  following  each  sensor; 
however,  noise  waveforms  arriving  from  other  than  the  look 
direction will not,  in  general,  produce  equal  voltage  com- 
ponents on any given  vertical  column of taps.  The  voltages 
(signal  plus  noise) at each  tap  are  multiplied  by  the  tap 
weights  and  added  to  form  the  array  output.  Thus  as  far  as 
the signal  is  concerned, the  array processor is  equivalent  to 
a single tapped  delay line in which  each  weight  is  equal to  the 
sum of the  weights  in  the  corresponding  vertical  column of 
the processor, as  indicated  in Fig. 1. These  summation  weights 
in  the  equivalent  tapped  delay  line  must  be  selected so as  to 
give the desired  frequency  response  characteristic  in  the look 
direction. 

If the look direction  is  chosen  to be other than  that  per- 
pendicular to  the line of sensors,  then  the  array  can  be 
steered  either  mechanically  or  electrically  by  the  addition of 
steering  time  delays  (not  shown)  placed  immediately  after 
each  sensor. 

A processor  having K sensors  and J taps per  sensor  has 
K J  weights  and  requires J constraints  to  determine  its look- 
direction  frequency  response.  The  remaining K J -  J degrees 
of freedom  in  choosing  the  weights  may  be used to minimize 
the  total  power  in  the  array  output.  Since  the  look-direction 
frequency  response  is fixed by  the J constraints,  minimization 
of the  total  output power is  equivalent  to minimizing the non- 
look-direction noise  power, so long as  the  set of signal  voltages 
at the  taps  is  uncorrelated  with  the  set of noise voltages at 
these  taps.  The  latter  assumption  has  commonly  been  made 
in  previous  work  on iterative  array processing [l], [SI, [8]- 
[lo]. The effect of signal-correlated noise in  the  array  may 
be to cancel out all or  part of the desired  signal  component 
in the  array  output.  Sources of signal-correlated noise may  be 
multiple  signal-propagation  paths,  and  coherent  radar  or 
sonar  “clutter.” 

I t  is permissible, and  in  fact  desirable  for  proper noise 
cancellation that the  voltages  produced  by  the noises on the 
taps of the  array be  correlated  among  themselves,  although 
uncorrelated  with  the  signal  voltages.  Examples of such 
noises include  waveforms  from  point  sources  in  other  than 
the look  direction (e.g., lightning,  “jammers,” noise from 
nearby vehicles}, spatially  localized  incoherent  clutter,  and 
self-noise from  the  structure  carrying  the  array. 

Noise  voltages  which  are  uncorrelated  between  taps (e.g., 
amplifier  thermal noise) may  be  partially  rejected  by  the 
adaptive  array  in  two ways.  As  in  a  conventional  nonadaptive 
array,  such noises are  eliminated  to  the  extent  that signal 
voltages on the  taps  are  added  coherently at the  array  output, 
while uncorrelated noise voltages  are  added  incoherently. 
Second,  an  adaptive  array  can  reduce  the  weighting on any 
tap t h a t  may  have  a  disportionately  large  uncorrelated noise 
power. 

11. OPTIMUM-CONSTRAINED LMS WEIGHT VECTOR 
The first  step  in  developing  the  constrained LMS algo- 

rithm  is  to find the  optimum  weight  vector. 
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Notation 
Notation will be as follows  (see Fig. 2): 
Every A seconds,  where A may be a multiple of the  delay 

r between  taps,  the  voltages at  the  array  taps  are  sampled. 
The  vector of tap  voltages  at  the  kth  sample  is  written  X(k), 
where 

XT(k)  [ ~ 1 ( k A ) ,  x * ( k A ) ,  * * * , X K J ( ~ A ) ] .  

The  superscript T denotes  transpose.  The  tap  voltages  are 
the  sums of voltages  due  to  look-direction  waveforms 1 and 
non-look-direction  noises n, so that  

X ( k )  = L(k)  + X @ )  (1) 

where the  KJ-dimensional  vector of look-direction  wave- 
forms at the  kth  sample  is 

W )  
R taps 

1 K taps  

K taps  

and  the  vector of non-look-direction  noises  is 

N T ( k )  4 [ n ~ ( k A ) ,  nn(kA), * . , ~ K J ( W ] .  

The  vector of weights a t  each tap  is W ,  where 

WT p [Wl, w2, . * * , W K J ] .  

I t  is  assumed  for  this  derivation  that  the  signals  and 
noises are  adequately  modeled  as  zero-mean  random processes 
with  (unknown)  second-order  statistics: 

E [ X ( k ) X T ( h ) ]  4 Rxx ( 2 4  
E[N(k);VT(k)]  4 RNN (2b) 
E [ L ( k )  LT(k) ] 4 R L L .  ( 2 4  

As  previously  stated,  it  is  assumed  that  the  vector of look- 
direction  waveforms  is  uncorrelated  with  the  vector of non- 
look-direction  noises,  i.e., 

E[N(k)LT(k)]  = 0.  (3) 

I t  is  assumed that  the noise environment  is  distributed so 
that RXX and RNN are positive  definite [12]. 

The  output of the  array (signal  estimate) at the  time of 
kth  sample  is 

y ( k )  = WTX(k) = X*(k)W.  (4) 

Using (4) the  expected  output power of the  array  is 

E [ y Z ( k ) ]  = E [ W T X ( k ) X T ( k ) W ]  = WTRxxW.  (5) 

The  constraint  that  the  weights on the   j th  vertical  column 
of taps  sum  to a chosen numberfi (see  Fig. 1) is  expressed by 
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Fig. 2. Signals  and  noises  on  the array. Because the array is steered toward the look direction, all beam signal 
components on any  given column of filter taps are identical. 

the  requirement 

cjTW = f j ,  j = 1, 2, - . - , J 
where  the  KJ-dimensional  vector cj  has  the  form 

cj = 

'0' 

0 

0 

0 

1 

1 

0 

0 

0 

.om 

j th  group of K elements. 

Constraining  the  weight  vector  to  satisfy  the J equations of 
(6) restricts W to a (KJ-J)-dimensional  plane. 

Define the  constraint  matrix C as 

-J- 

look-direction-equivalent  tapped  delay line shown  in  Fig. 1: 

By  inspection  the  constraint  vectors cj are  linearly  indepen- 
dent, hence, C has full rank  equal  to J .  The  constraints (6)  
are now written 

CTW = 5. (10) 

Optimum Weight Vector 
Since  the  look-direction-frequency  response  is fixed by  the 

J constraints,  minimization of the non-look-direction  noise 
power is  the  same as minimization of the  total  output power. 
The  cost  criterion used  in this  paper will be minimization of 
total  array  output power WTRxxW. The problem of finding 
the  optimum  set of filter weights Wept is  summarized  by (5) 
and (10) as 

minimize WTRxxW Ula) 

subject  to CTW = 5. (1W 
W 

This  is  the  constrained LMS problem. 
W,,t is  found  by  the  method of Lagrange  multipliers, 

which is  discussed  in  [13].  Including a factor of + to  simplify 
later  arithmetic,  the  constraint  function  is  adjoined  to  the 
cost  function  by a /-dimensional  vector of undetermined 
Lagrange  multipliers X :  

H ( W )  = +WTRxxW + XT(CTW - 5). (12) 

Taking  the  gradient of (12) with  respect  to W 

V w H ( W )  RxxW + a. (13) 

The first term  in (13) is a vector  proportional  to  the  gradient 
of the  cost  function  (lla),  and  the  second  term is a vector and define 5 as the  J-dimensional  vector of weights of the 
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normal  to  the  (KJ-J)-dimensional  constraint  plane defined 
by PW-S=O [14]. For  optimality  these  vectors  must  be 
antiparallel  [IS], which is  achieved  by  setting  the  sum of the 
vectors (13) equal  to  zero 

VwH(W)  = RxxW + CX = 0. 

In  terms of the  Lagrange  multipliers,  the  optimal  weight 
vector is then 

Wopt = - R x x - 0  (14) 

where Rxx-l exists  because RXX was  assumed  positive defi- 
nite.  Since Wept must  satisfy  the  constraint  (llb) 

CTWopt = 5 = - CTRxx-‘CX 

and  the  Lagrange  multipliers  are  found  to  be 

x = - [ c  TR~x-’C]-’5 (15) 

where  the  existence of [CTRxx-’C]-’ follows  from the  facts 
that  RXX is  positive  definite  and C has full rank [6]. From 
(14) and (15) the  optimum-constrained  LMS  weight  vector 
solving (11) is 

Wept = R x x - ’ C [ C ~ R X X - * C ] - ~ ~ .  (16) 

Using the  set of weights Wept in  the  array processor of 
Fig. 2 forms  the  optimum  constrained  LMS  processor,  which 
is a filter in  space  and  frequency.  Substituting Wept in (4), the 
constrained  least  squares  estimate of the  look-direction  wave- 
form  is 

yo&) = Wo,tTX(k). (1 7) 

Discussion 
The  constrained  LMS filter is  sometimes  known  by  other 

names. If the  frequency  characteristic  in  the  look-direction  is 
chosen to be  all-pass  and  linear  phase  (distortionless),  the 
output of the  constrained  LMS filter  is the  maximum likeli- 
hood  estimate of a stationary process in  Gaussian  noise if the 
angle of arrival  is  known [IS]. The  distortionless  form of the 
constrained  LMS  filter  is  called  by  some  authors  the  ‘Mini- 
mum  Variance  Distortionless  Look”  estimator,  ‘Maximum 
Likelihood  Distortionless  Estimator,”  and  ‘Least  Squares 
Unbiased  Estimator.”  By  suitable  choice of 5 a variety of 
other  optimal  processors  can  be  obtained  [16]. 

111. THE ADAPTIVE ALGORITHM 

In  this  paper  it  is  assumed  that  the  input  correlation 
matrix RXX is  unknown a  priori and  must  be  learned  by  an 

implement  and,  for a given  computational  cost,  is  applicable 
to  arrays  in  which  the  number of weights  is on the  order of 
the  square of the  number  that  could  be  handled  by  the  itera- 
tive  matrix  inversion  method  and  the  cube of the  number  that 
could  be  handled  by  the  direct  substitution  method. 

Derivation 
For motivation of the  algorithm  derivation  temporarily 

suppose  that  the  correlation  matrix Rxx is  known. In  con- 
strained  gradient-descent  optimization,  the  weight  vector  is 
initialized at  a vector  satisfying  the  constraint  (llb),  say 
W ( 0 )  = C ( P C ) - V ,  and at each  iteration  the  weight  vector  is 
moved  in the  negative  direction of the  constrained  gradient 
(13). The  length of the  step  is  proportional to the  magnitude 
of the  constrained  gradient  and  is  scaled  by a constant p. 
After  the  kth  iteration  the  next  weight  vector  is 

W ( k  + 1) = W ( k )  - p v w a [ W ( k ) ]  

= W(k)  - p[RxxW(k)  + CX(k)] (18) 

where  the  second  step  is  from  (13).  The  Lagrange  multipliers 
are  chosen  by  requiring  W(kS1)  to  satisfy  the  constraint 
( l l b ) :  

5 = CTW(k + 1) = CTW(k)  - pCTRxxW(k) - pCTCX(k) .  

Solving  for  the  Lagrange  multipliersX(k)  and  substitutinginto 
the  weight-iteration  equation (18) we have 

W ( k  + 1) = W ( k )  - p [ l  - C(CTC)-’CT]RxxW(k) 

+ C(CTC)-’[5 - C T W ( k ) ] .  (19) 

The  deterministic  algorithm (19) is  shown i n  this  form to 
emphasize that  the  last  factor 5- F W ( k )  is  not  assumed to 
be zero, as i t  would be if the weight  vector  precisely  satisfied 
the  constraint at the  kth  iteration. I t  will be  shown  in  Section 
VI  that  this  term  permits  the  algorithm  to  correct  any  small 
deviations  from  the  constraint  due  to  arithmetic  inaccuracy 
and  prevents  their  eventual  accumulation  and  growth. 

Defining the  KJ-dimensional  vector 

F 6 C(CTC)-15 (204 

and  the K J X K J  matrix 

P p I - C(CTC)-’CT (20b) 

the  algorithm  may  be  rewritten  as 

W ( k  + 1) = P [ W ( k )  - pRxxW(k) ]  + F .  (21) 
adaptive  technique. In stationary  environments  during Equation (21) is a deterministic  constrained  gradient 
learning! and in time-vaving 
the Optimum 

an estimate Of descent  algorithm  requiring  knowledge of the  input correla- 
weights must be recomputed  periodically. tion  matrix Rxx,  which, however, in  the array is 

Direct  substitution of a correlation  matrix  estimate  into  the 
optimal-weight  equation (16) requires a number of multipli- 
cations at each  iteration  proportional  to  the  cube of the  num- 

required  inversion of the  input  correlation  matrix.  Recently 
Saradis et al. [I71 and  Mantey  and  Griffiths [18] have  shown 
how to  iteratively  update  matrix  inversions,  requiring  only a 
number of multiplications  and  storage  locations  proportional W(0)  = F 
to the  square of the  number of weights. The  gradient-descent 
constrained  LMS  algorithm  presented  here  requires  only a 
number of multiplications  and  storage  locations  directly  pro- 
portional to  the  number of weights. It  is  therefore  simple  to  where y ( k )  is  the  array  output (signal  estimate)  defined  by  (4). 

unavailable a priori. An  available  and  simple  approximation 
for RXX at the  kth  iteration  is  the  outer  product of the   t ap  
voltage  vector  with  itself: X ( k ) X T ( k ) .  Substitution of this 

algorithm 

Of weights. The is primarily caused by the estimate  into (21) gives the  constrained  LMS 

W ( k  + 1) = P [ W ( k )  - r y ( k ) X ( k ) ]  + F ! 
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Discussion 
The  constrained LMS algorithm (22)  satisfies the  con- 

straint P W ( k + 1 ) = 5  at each  iteration,  as  can be verified 
by  premultiplying (22) by P and using (20). At  each  iteration 
the  algorithm  requires  only  the  tap  voltages X ( k )  and  the 
array  output y ( k )  ; no a priori knowledge of the  input  correla- 
tion  matrix  is  needed. F is a constant  vector  that  can be 
precomputed.  One of the  two  most complex operations  re- 
quired  by (22) is  the  multiplication of each of the K J  com- 
ponents of the  vector X ( k )  by  the  scalar p y ( k ) ;  the  other 
significa I t  operation  is  indicated  by  the  matrix P =  I 
- C ( P C ) - l P .  Because of the  simple  form of C [refer  to (7)],  
multiplication of a vector  by P as indicated  in (22) amounts 
to  little  more  than a few additions.  Expressed  in  summation 
notation  the  iterative  equations  for  the  weight  vector  com- 
ponents  are 
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(22), using (4), (2a),  and  the  independence  assumption  yields 
an  iterative  equation  in  the  mean  value of the  constrained 
LMS weight  vector 

E[W(k  + I ) ]  = P { E [ W ( k ) ]  - r R x x E [ W ( k ) ] ]  + F .  (23) 

Define the  vector V ( k f 1 )  to be the difference between 
the  mean  adaptive  weight  vector at iteration kfl and  the 
optimal  weight  vector (16) 

V ( k  + 1) p E[W(k + l)] - w o p t .  

Using (23) and  the  relations F = ( I - P )  Wept and 
PRxxWo,t=O, which may be verified by  direct  substitution 
of (16) and  (20b),  an  equation for the difference  process may 
be constructed 

V ( k  + 1) = PV(R) - pPRxxV(k).   (24) 

These  equations  can  readily be implemented  on a digital 
computer. 

IV.  PERFORMANCE 
Convergence to the Optimum 

The  weight  vector W(k)  obtained  by  the use of the  sto- 
chastic  algorithm (22) is  a  random  vector.  Convergence of the 
mean  weight  vector  to  the  optimum  is  demonstrated  by 
showing that  the  length of the difference vector  between  the 
mean  weight  vector  and  the  optimum (16) asymptotically 
approaches zero. 

Proof of convergence of the  mean is greatly simplified 
by  the  assumption  (used  in  [2])  that successive samples of 
the  input  vector  taken A seconds  apart  are  statistically  inde- 
pendent.  This  condition  can  usually be approximated  in 
practice  by  sampling  the  input  vector at intervals  large  com- 
pared  to  the  correlation  time of the  input process plus  the 
length of time  it  takes  an  input  waveform  to  propagate  down 
the  array.  The  assumption  is more restrictive  than  necessary, 
since Daniel1 [19] has  shown that  the  much  weaker  assump- 
tion of asymptotic  independence of the  input  vectors  is 
sufficient to  demonstrate  convergence  in  the  related  uncon- 
strained  least  squares  problem. 

Taking  the  expected  value of both  sides of the  algorithm 

The  idempotence  of P (i.e., P 2 =   P ) ,  which can  be verified 
by  carrying  out  the  multiplication using  (20b) and  premulti- 
plication of equation (24) by P shows  that P V ( k )  = V ( k )  for 
all k, so (24) can be written 

V ( k  + 1) = [I - pPRxxP]V(k)  

= [ I  - pPRxxP]k+1V(O). 

The  matrix PRxxP determines  both  .the  rate of conver- 
gence of the  mean  weight  vector  to  the  optimum  and  the 
steady-state  variance of the  weight  vector  about  the  optimum. 
I t   i s  shown  in  [6]  that PRxxP has precisely J zero eigen- 
values,  corresponding to the  column  vectors of the  constraint 
matrix C; this  is  a  result of the  fact  that  during  adaption no 
movement  is  permitted  away  from  (KJ-  J)-dimensional  con- 
straint plane. I t  is  also  shown  in [6, appendix C]   tha t  PRxxP 
has K J -  J nonzero  eigenvalues ui. i = 1, 2, . . 0 ,  K J -  J, with 
values  bounded  between  the  smallest  and  largest  eigenvalues 
of Rxx 

Amin 5 ami, 5 (Ti 5 umax 5 X,,,, i = 1 ,2 ,  . . . , KJ - J 

where A m i n  and X,,, are  the  smallest  and  largest  eigenvalues 
of RXX and urnin and urnax are  the  smallest  and  largest  nonzero 
eigenvalues  of PRxx P .  
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Examination of V(O)= F -  Wept shows that  it   can be 
expressed as  a  linear  combination of the  eigenvectors of 
PRxxP corresponding  to  nonzero  eigenvalues. If V ( 0 )  is  equal 
to  an  eigenvector of PRxxP,  say ei with  eigenvalue ui#O then 

V ( ~ Z  + 1) = [ I  - P P R X X P ] ~ + ~ ~ ~  

= [I - pui]k+’ei. 

The convergence of the mean  weight  vector  to  the  opti- 
mum  weight  vector  along  any  eigenvector of PRxxP is  there- 
fore  geometric  with  geometric  ratio  (1-pa;). The  time 
required for the  euclidean  length of the difference  vector  to 
decrease to  e-1 of its  initial  value  (time  constant)  is 

7i = A/ln (1 - pai) E A/pai ( 2 5 )  

where  the  approximation  is  valid for pcai<<l. 
If p is  chosen so that  

0 < P < l /amax 

then  the  length  (norm) of any difference  vector  is  bounded 
between  two  ever-decreasing  geometric  progressions 

(1 - ~~mnx>k+ll/V(O>ll I IIv(k + l>lj 
5 (1 - Pamin)k+ll/V(o>Ij 

and so if the  initial  difference  is  finite  the  mean  weight  vector 
converges  to  the  optimum, i.e., 

lim I ~ E [ W ( K ) ]  - Woptl( = 0 
k+ m 

with  time  constants  given  by  (25). 

Steady-State  Performance-Stationary  Environment 
The  algorithm  is  designed  to  continually  adapt  for  coping 

with  nonstationary noise environments.  In  stationary  environ- 
ments  this  adaptation  causes  the  weight  vector  to  have a vari- 
ance  about  the  optimum  and  produces  an  additional  com- 
ponent of noise (above  the  optimum)  to  appear  at  the  output 
of the  adaptive processor. 

The  output power of the  optimum processor  with a fixed 
weight  vector (17) is 

E[yopt2(h)] = WoptTRxxWopt 
= ST(CTRxx-’C)-’5. 

A measure of the  fraction of additional noise caused  by  the 
adaptive  algorithm  operating  in  steady  state  in a stationary 
environment  is  termed  “misadjustment” M ( p )  by  Widrow 

By  assuming that  successive  observation  vectors  [vectors 
X@) of tap voltages]  are  independent  and  have  components 
x l ( k ) ,  . . - ,  X K L ( ~ )  that  are  jointly  Gaussian  distributed, 
Moschner  [20]  calculated  very  tight  bounds on the  misad- 
justment, using a method  due  to  Senne [21], [22].  For  a 
convergence constant p satisfying 

1 I 

O < p <  
amsx + (1/2) tr ( P R x x P )  

the  steady-state  misadjustment  may be  bounded  by 

where tr  denotes  trace. 
M ( M )  can be made  arbitrarily close to  zero  by  suitably 

small  choice of p ;  this  means  that  the  steady-state perform- 
ance of the  constrained  LMS  algorithm  can  be  made  arbi- 
trarily close to  the  optimum.  From (25) i t  seen that  such  per- 
formance  is  obtained at the expense of increased  convergence 
time. 

If p is chosen to  satisfy 
n 

then  it  is  guaranteed  to  satisfy (26).  Griffiths [l] shows that  
the  upper  bound  in (28) can be calculated  directly  and  easily 
from  observations  since  tr (Rxx)  = E [ X r ( k ) X ( k ) ] ,  the  sum 
of the powers of the  tap voltages. 

Steady-State Performance-Nonstatwnary Environment 
A model of the effect of a nonstationary noise environment 

proposed  by  Brown  [23]  is that  the  steady-state  rms  change 
of the  optimal  weight  vector Wopt(K) between  iterations  has 
magnitude 6, i.e., 

lim supEIJWopt(k  + 1) - Wopt(lZ)l12 = 62. 

Brown’s  general  results  may be applied  to  the  constrained 
LMS  algorithm  by  restricting  the  optimal  weight  vector  to 
have  magnitude less than some  number / /  Wmnxll and  again 
assuming  the  successive  input  vectors  are  independent  with 
Gaussian-distributed  components. For p small i t  can  be 
shown [23, p. 471 that the  steady-state  rms  distance of the 
weight  vector  from the  optimum  is  bounded  by 

k- m 

where any  starred  quantities p* or p* are  taken  to  bound  the 
corresponding  time-varying  quantity &), i.e., p* <q(k) <q* 
for all k. In  general,  the  optimum  convergence  constant p 
that  minimizes the  upper  bound (29)  for a nonstationary 
environment is nonzero. This  contrasts  with  the  stationary 
case,  in  which  the  best  steady-state  performance  is  obtained 
by makingp  as  small  as possible. 

V. GEOMETRICAL  INTERPRETATION 
The constrained  LMS  algorithm (22) has a simple  geo- 

metrical  interpretation  that  is useful  for  visualizing the  error- 
correcting  property  which  keeps  the  weight  vector  from 
deviating  from  its  constraints. 

In  an  error-free  implementation of the  algorithm,  the KJ- 
dimensional  weight  vectors  satisfy  the  constraint  equation 
( l lb )   and  therefore  terminate on a  constraint  plane A defined 
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Fig. 3. The (KJ - J)-plane A and subspace Z defined by the constraint. 

Fig. 5 Example showing contours of constant  output power and the 
constrained weight vector that minimizes output power. 

Rxx-'C(C?'Rxx-'C)-19. 

Fig. 4. P projects  vectors onto the  constraint subspace. 

A = { W : p W  = 51. Fig. 6. Operation of the constrained LMS algorithm: 
K(k+l)=P[~(k)-~~(k)X(k)l+F. 

This  (KJ-a-dimensional  constraint  plane  is  indicated 
diagrammatically  in Fig. 3. 

I t  is well known [I41 that  vectors  pointing  in a direction 
normal to  the  constraint  plane  (but  not  necessarily  normal 
to  the  vectors  that  terminate  on  that plane) are  linear  combi- 
nations of the  constraint  matrix column  vectors.  These  vec- 
tors  have  the  form C A ,  where A is a J-dimensional  vector 
determining  the  linear  combination.  Thus  the  vector 
F =  C(CTC)-%T, appearing  in  the  algorithm (22) and used as 
the  initial  weight  vector,  points  in a direction  normal  to  the 
constraint  plane. F also  terminates  on  the  constraint  plane 
since C?'F=S. Thus F is  the  shortest  vector  terminating  on 
the  constraint  plane (see  Fig. 3). 

The homogeneous  form of the  constraint  equation 

CrW'O (30) 

defines a second  (KJ-J)-dimensional  plane, which includes 
the zero  vector  and  thus  passes  through  the origin. Such a 
plane  is  called a subspace [ll] (see  Fig. 3). 

The  matrix  Pin  the  algorithm (22) is a projection  operator 
[24]. Premultiplication of any  vector  by P will annihilate 
any  components  perpendicular  to 8,  projecting  the  vector 
into  the  constraint  subspace (see Fig. 4). 

The vector y ( k ) X ( K )  in  the  algorithm  is  an  estimate of 
the  unconstrained  gradient.  Referring  to (12) the  uncon- 
strained  cost  function  is 4 W R x x W .  The unconstrained 
gradient  [refer  to (13)] is RxxU;. The  estimate of RxxW a t  
the Kth iteration,  used  in  deriving (22), is y ( k ) X ( k ) .  

Contours of constant  output power  (cost) and  the  opti- 
mum  constrained  weight  vector Wept that minimizes the  out- 
put power are shown  in  Fig. 5. 

The  operation of the  constrained LMS algorithm  is  shown 
in  Fig. 6. In  this  example,  the  unconstrained  negative 
gradient  estimate - -y (k)X(K)  is scaled  by p and  added  to  the 
current  weight  vector W(K). This  is  an  attempt  to  change  the 
weight  vector  in  a  direction  that  minimizes  output power. In 

general,  this  change  moves  the  resulting  vector off the con- 
straint plane. The  resulting  vector  is  projected  onto  the  con- 
straint  subspace  and  then  returned  to  the  constraint  plane  by 
adding F. The new weight  vector W(K+l) satisfies the  con- 
straint  to  within  the  accuracy of the  arithmetic used  in im- 
plementing  the  algorithm. 

VI. ERROR-CORRECTING FEATURE 
In  a digital-computer  implementation of any  algorithm, 

i t   i s  likely that  small  computational  errors wi l l  occur at each 
iteration  because of truncation,  roundoff, or quantization 
errors. A difficulty  in  applying  the well-known gradient- 
projection  algorithm  to  the  real  time  array-processing  prob- 
lem is  that  computational  errors  causing  deviations of the 
weight  vector  from  the  constraint  are  not  corrected [7], [9 ] .  
Without  additional  error-correcting  procedures,  application 
of the  gradient-projection  algorithm  is  limited  to  problems 
requiring few enough  iterations  that  significant  deviations 
from  the  constraint  do  not  occur.  The.  constrained LMS 
algorithm,  on  the  other  hand,  was specifically designed to  
continuously  correct  for  such  errors  and  prevent  them  from 
accumulating. The reason for this  characteristic  is  shown  by 
a geometrical  comparison of the  two  algorithms. 

The gradient-projection  algorithm  may be derived  by 
following the  derivation of the  constrained LMS algorithm 
to (19) and  dropping  the last factor, 5- C'W(R). This  factor 
would be equal  to  zero  in  a  perfect  implementation  in  which 
the  weight  vector  satisfied  the  constraint P W ( K )  =5 at each 
iteration.  The  algorithm  that  results  when  the  term  is 
dropped  is 

W(0)  = C(PC)--Is 

Tlr(k + 1) = W(K) - pPy(K)X(K) .  (3 1) 

This  is a gradient-projection  algorithm [ll]. I t  is so named 
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h 
Fig. 7. Operation of the  gradient-projection  algorithm (31). 

I\ \ 
A 

Fig. 8. Error  propagation. The constrained LMS algorithm  (a)  corrects 
deviations from the  constraints  while the gradient-projection algo- 
rithm (b) allows  them to accumulate. 

because the  unconstrained  gradient  estimate y ( k ) X ( k )  is 
projected  onto  the  constraint  subspace  and  then  added  to  the 
current  weight  vector.  Its  operation  is  shown  in  Fig. 7 (com- 
pare  with  Fig.  6). 

A comparison  between  the  effect of computational  errors 
on the  gradient-projection  algorithm  and on the  constrained 
LMS algorithm  is  shown  in Fig. 8. The  weight  vector  is 
assumed  to be off the  constraint at  the  kth  iteration because 
of a quantization  error  occurring  in  the  previous  iteration. I t  
is  shown  in  Fig.  8(a)  that  the  constrained LMS algorithm 
makes  the  unconstrained  step,  projects  onto  the  subspace, 
and  then  adds F, producing a new weight  vector W(k+ 1) that  
satisfies the  constraint.  The  gradient-projection  algorithm 
[Fig.  8(b)], however,  projects the  gradient  estimate  onto 
the  subspace  and  adds  the  projected  vector  to  the  past  weight 
vector,  moving  parallel  to  the  constraint  plane but con- 
tinuing  the  error.  Note  the  implicit  (incorrect)  assumption 
that  W(k)  satisfied the  constraint,  corresponding  to  the  same 
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CREOUENCY 

Fig. 9. Frequency response of the processor in the  look  direction. 
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Fig. 10. Power  spectral density of incoming  signals.  See  Fig. 2 and 
Table I for spatial  position of noises. 

TABLE I 
SIGNALS AND NOISES IN THE SIMULATION (SEE FIG. 2) 

Direction Center 
(Oo is normal Frequency 

Source Power to array) (1.0 is 1 / ~ )  Bandwidth 

Look-direction 

Noise A 1 .o 450 0 . 2  0.05 
Noise B 1 .o 600 0 .4  0.07 
White noise 

signal 0.1 00 0.3 0.1 

(per tap) a. 1 

assumption  made in  the  derivation of the  gradient-projection 
algorithm. 

Accumulating  errors  in  the  gradient-projection  algorithm 
can  be  expected  to  cause  the  weight  vector  to  do a random 
walk away  from  the  constraint  plane  with  variance  (expected 
squared  distance  from  the  plane)  increasing  linearly  with  the 
number of iterations. By contrast,  the  expected  deviation of 
the  constrained LMS algorithm  from  the  constraint  does  not 
grow,  remaining at its original  value. 

VII. SIMULATION 
A computer  simulation of the processor  was  made  using 

6-digit  floating  point  arithmetic on a  small  computer  (the 
HP-2116). The processor  had four sensors on a line  spaced at 
7-second  intervals  and  had  four  taps  per sensor (thus K J =  16). 
The  environment  had  three  point-noise  sources,  and  white 
noise added  to  each  sensor.  Power of the look direction  signal 
was quite small  in  comparison  to  the power of interfering 
noises  (see Table I). The  tap  spacing  defined a frequency  of 
1.0 (i.e., f =  1.0 is a  frequency of 1/7 Hz). I n  the look-direc- 
tion,  foldover  frequency  for the processor  response  was 37, or 
0.5. All signals were generated  by a pseudo-Gaussian  gen- 
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Fig. 11. The  output power of the constrained LMS filter (upper  graph) decreases as it  adapts to discriminate against unwanted noise. 
Lower curve shows small deviations from the constraint due  to quantization. 
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Fig. 12. Output power of the gradient-projection  algorithm  (upper  graph)  operated on the same data  as  the constrained LMS algorithm 
(c.f., Fig. 11). Lower curve shows that deviations from the  constraint  tend  to increase with  time. Note scale. 

erator  and filtered to give them  the  proper  spatial  and 
temporal  correlations. All temporal  correlations were ar- 
ranged  to  be  identically  zero  for  time differences greater  than 
257. The  time  between  adaptations A was  assumed  greater 
than 587, so successive samples of X ( k )  were uncorrelated. 

The look direction filter was specified by  the  vector 
ST= [l, - 2, 1.5, 21 which resulted  in  the  frequency  charac- 
teristic  shown in Fig. 9. The signal and noise spectra  are 
shown  in  Fig.  10  and  their  spatial  position  in  Fig. 2. 

I n  this  problem,  the  eigenvalues of Rxx ranged  from 0.111 
to  8.355. The  upper permissible bound on the  convergence 
constant p calculated  by (26) was 0.074; a  value of p=O.Ol 
was  selected,  which,  by (27),  would lead to a  misadjustment 
of between 15.2 and 17.0 percent, 

The processor was  initialized  with W(0) = F =  C ( P C ) - ' 3 ,  
and Fig. 11 shows  performance  as  a  function of time.  The 
upper  graph  has  three  horizontal lines. The lower  line is  the 
output power of the  optimum  weight  vector.  The closely 

spaced  upper  two  lines  are  upper  and lower bounds for the 
adaptive processor output  power, which is  the  optimum  out- 
put power plus  misadjustment.  The  mean  steady-state  value 
of the processor's output power falls  somewhere  between  the 
upper  and lower bounds  (but  may, at any  instant  fall  above 
or below these  bounds).  The difference between  the  initial 
and  steady-state power  levels is  the  amount of undesirable 
noise power the processor has  been  able  to  remove  from  the 
output. 

A simulation of the  gradient  projection  algorithm (31) on 
the  array  problem  was  made using exactly  the  same  data  as 
used by  the  constrained LMS algorithm.  The  results  are 
shown  in  Fig. 12. The lower part of Fig. 1 2  shows how the 
gradient-projection  algorithm  walks  away  from  the  constraint. 
Note  the  change  in scale. If the  errors of the  constrained 
LMS algorithm  (Fig. 11) were plotted on the  same scale they 
would not be discernible.  The  errors of the  gradient-projection 
method  are  expected  to  continue  to grow. 
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The  fact  that  the  output power of the  gradient-projection 
processor  (upper  curve,  Fig. 12) is  virtually  identical  to  the 
output power of the  constrained LMS processor  is  a  result of 
the  fact  that  the  errors  have  not  yet  accumulated  to  the  point 
of moving the  constraint  a significant  radial  distance  from  the 
origin. 

VIII. LIMITATIONS AND EXTENSION 
Application of the  constrained LMS algorithm  in  some 

array processing  problems  is  limited by  the  requirement  that 
the non-look-direction  noise  voltages  on the  taps be  uncor- 
related  with  the  look-direction  signal  voltages. 

This  restriction  is a result of the  fact  that if the noise 
voltages  are  correlated  with  the  signal  then  the  processor 
may cancel out portions of the signal  with them  in  spite of 
the  constraints. If the  source of correlated noise is  known,  its 
effect  may  be  reduced  by  placing  additional  constraints  to 
minimize the  array response  in its  direction. 

Implementation  errors, i.e., deviations  from  the  assumed 
electrical and  spatial  properties of the  array (such as  incorrect 
amplifier  gains,  incorrect  sensor  placements,  or  unpredicted 
mutual  coupling  between  sensors)  may  also  limit  the effec- 
tiveness of the processor  by  permitting  it  to  discriminate 
against  look-direction  signals  while  still  satisfying  the  letter 
of the  constraints.  Injection of known  test  signals  into  the 
array  may  provide  information  about  the  signal  paths  that 
can  be  used  to  compensate,  in  part,  for  the  errors. 

The  algorithm  may be extended  to  a more  general sto- 
chastic  constrained  least  squares  problem 

min E {  [d(k) - W T X ( k ) I 2 )  subject to CTW = 5 (32) 

where d(R) is a scalar  variable  related  to  the  observation  vec- 
tor X(R)  and  Cis  a general  constraint  matrix.  The  scalar d ( k )  
may  be a random  variable  correlated  with X ( R )  or i t   may be a 
known  test  signal used to  compensate  for  array  errors.  This 
would  be a classical  least  squares  problem  except  that  the 
statistics of X ( k )  and d(k) are  assumed  unknown a priori. 
The general  constrained LMS algorithm  solving (32) may  be 
derived  similarly to  (22) and  is 

W(0) = C(CTC)-’5 

The general  algorithm  is  applicable  to  constrained  modeling, 
prediction,  estimation,  and  control. I t  is  discussed  in [6]. 

IX.  CONCLUSION 
Analysis  and  computer  simulations  have  confirmed  the 

ability of the  constrained LMS algorithm  to  adjust  an  array 
of sensors  in  real  time  to  respond  to a desired  signal  while 
discriminating  against noise.  Because of a system of con- 
straints  on  weights  in  the  array,  the  algorithm  is  shown  to 
require  no  prior  knowledge of the signal or noise statistics. 

A  geometrical  presentation  has  shown  why  the  con- 
strained LMS algorithm  has  an  ability  to  maintain  the  con- 
straints  and  prevent  the  accumulation of quantization  errors 
in a digital  implementation.  The  simulation  tests  have  con- 
firmed the effectiveness of this  error-correcting  feature,  in 
contrast  with  the usual  uncorrected  gradient-projection 
algorithm. The error-correcting  feature  and  the  simplicity of 
the  algorithm  make  it  appropriate for  continuous  real-time 

signal  estimation  and  discriminating  against noises in a 
possibly time-varying  environment  where  little a priori 
information  is  available  about  the  signals  or noises. Time 
constants,  steady-state  performance,  and a proof of converg- 
ence  are  derived  for  operation of the  algorithm in a stationary 
environment:  convergence  and  steady-state  performance  in a 
nonstationary  environment  are  also  shown. 

A simple  extension of the  algorithm  may  be used to  solve 
a general  constrained LMS problem,  which  is to  minimize the 
expected  squared  difference  between a multidimensional  filter 
output  and  a  known  desired  signal  under  a  set of linear 
equality  constraints. 
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