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Abstract—This paper describes a system that gives a mobile
robot the ability to perform automatic speech recognition with si-
multaneous speakers. A microphone array is used along with a
real-time implementation of geometric source separation (GSS)
and a postfilter that gives a further reduction of interference from
other sources. The postfilter is also used to estimate the reliabil-
ity of spectral features and compute a missing feature mask. The
mask is used in a missing feature theory-based speech recogni-
tion system to recognize the speech from simultaneous Japanese
speakers in the context of a humanoid robot. Recognition rates
are presented for three simultaneous speakers located at 2 m from
the robot. The system was evaluated on a 200-word vocabulary
at different azimuths between sources, ranging from 10 ◦ to 90 ◦.
Compared to the use of the microphone array source separation
alone, we demonstrate an average reduction in relative recognition
error rate of 24% with the postfilter and of 42% when the missing
features approach is combined with the postfilter. We demonstrate
the effectiveness of our multisource microphone array postfilter
and the improvement it provides when used in conjunction with
the missing features theory.

Index Terms—Cocktail party, geometric source separation
(GSS), microphone array, missing feature theory, robot audition,
speech recognition.

I. INTRODUCTION

THE human hearing sense is very good at focusing on a sin-
gle source of interest and following a conversation even

when several people are speaking at the same time. This ability
is known as the cocktail party effect [1]. To operate in human
and natural settings, autonomous mobile robots should be able
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to do the same. This means that a mobile robot should be able
to separate and recognize all sound sources present in the en-
vironment at any moment. This requires the robots not only to
detect sounds, but also to locate their origin, separate the differ-
ent sound sources (since sounds may occur simultaneously), and
process all of this data to be able to extract useful information
about the world from these sound sources.

Recently, studies on robot audition have become increasingly
active [2]–[8]. Most studies focus on sound source localization
and separation. Recognition of separated sounds has not been
addressed as much, because it requires integration of sound
source separation capability with automatic speech recognition,
which is not trivial. Robust speech recognition usually assumes
source separation and/or noise removal from the feature vectors.
When several people speak at the same time, each separated
speech signal is severely distorted in spectrum from its original
signal. This kind of interference is more difficult to counter
than background noise because it is nonstationary and similar
to the signal of interest. Therefore, conventional noise reduction
techniques such as spectral subtraction [9], used as a front-end
of an automatic speech recognizer, usually do not work well in
practice.

We propose the use of a microphone array and a sound source
localization system integrated with an automatic speech recog-
nizer using the missing feature theory [10], [11] to improve
robustness against nonstationary noise. In previous work [5],
the missing feature theory was demonstrated using a mask com-
puted from clean (nonmixed) speech. The system we now pro-
pose can be used in a real environment by computing the missing
feature mask only from the data available to the robot. To do
so, a microphone array is used and a missing feature mask is
generated based only on the signals available from the array
postfiltering module.

This paper focuses on the integration of speech/signal pro-
cessing and speech recognition techniques into a complete sys-
tem operating in a real (nonsimulated) environment, demon-
strating that such an approach is functional and can operate in
real-time. The novelty of this approach lies in the way we esti-
mate the missing feature mask in the speech recognizer and in
the tight integration of the different modules.

More specifically, we propose an original way of computing
the missing feature mask for the speech recognizer that relies on
a measure of frequency bin’s quality, estimated by our proposed
postfilter. In opposition to most missing feature techniques, our
approach does not need estimation of prior characteristics of
the corrupting sources or noise. This leads to new capabilities
in robot speech recognition with simultaneous speakers. As an
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example, for three simultaneous speakers, our system can allow
at least three speech recognizers running simultaneously on the
three separated speaker signals.

It is one of the first systems that runs in real-time on real robots
while performing simultaneous speech recognition. The real-
time constraints guided us in the integration of signal and speech
processing techniques that are sufficiently fast and efficient. We,
therefore, had to reject signal processing techniques that are too
complex, even if potentially yielding better performance.

The paper is organized as follows. Section II discusses the
state of the art and limitations of speech enhancement and
missing feature-based speech recognition. Section III gives an
overview of the system. Section IV presents the linear separa-
tion algorithm and Section V describes the proposed postfilter.
Speech recognition integration and computation of the missing
feature mask are shown in Section VI. Results are presented in
Section VII, followed by the conclusion.

II. AUDITION IN MOBILE ROBOTICS

Artificial hearing for robots is a research topic still in its
infancy, at least when compared to the work already done on
artificial vision in robotics. However, the field of artificial au-
dition has been the subject of much research in recent years.
In 2004, the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) included, for the first time, a spe-
cial session on robot audition. Initial work on sound localization
by Irie [12] for the Cog [13] and Kismet robots can be found
as early as 1995. The capabilities implemented were, however,
very limited, partly because of the necessity to overcome hard-
ware limitations.

The SIG robot1 and its successor SIG2,2 both developed at
Kyoto University, have integrated increasing auditory capabili-
ties [14]–[20] over the years (from 2000 to now). Both robots
are based on binaural audition, which is still the most common
form of artificial audition on mobile robots. Original work by
Nakadai et al. [14], [15] on active audition has made it possible
to locate sound sources in the horizontal plane using binaural
audition and active behavior to disambiguate front from rear.
Later work has focused more on sound source separation [18],
[19] and speech recognition [5], [6].

The ROBITA robot, designed at Waseda University, uses two
microphones to follow a conversation between two people, orig-
inally requiring each participant to wear a headset [21], although
a more recent version uses binaural audition [22].

A completely different approach is used by Zhang and Weng
[23] in the SAIL robot with the goal of making a robot develop
auditory capabilities autonomously. In this case, the Q-learning
unsupervised learning algorithm is used instead of supervised
learning, which is most commonly used in the field of speech
recognition. The approach is validated by making the robot learn
simple voice commands. Although current speech recognition
accuracy using conventional methods is usually higher than the
results obtained, the advantage is that the robot learns words
autonomously.

1http://winnie.kuis.kyoto-u.ac.jp/SIG/oldsig/
2http://winnie.kuis.kyoto-u.ac.jp/SIG/

More recently, robots have started taking advantage of us-
ing more than two microphones. This is the case of the Sony
QRIO SDR-4XII robot [24] that features seven microphones.
Unfortunately, little information is available regarding the pro-
cessing done with those microphones. A service robot by Choi
et al. [25] uses eight microphones organized in a circular array
to perform speech enhancement and recognition. The enhance-
ment is provided by an adaptive beamforming algorithm. Work
by Asano, Asoh, and others [2], [26], [27] also uses a circular
array composed of eight microphones on a mobile robot to per-
form both localization and separation of sound sources. In more
recent work [28], particle filtering is used to integrate vision and
audition in order to track sound sources.

In general, human–robot interface is a popular area of
audition-related research in robotics. Work on robot audition for
human–robot interface has also been done by Prodanov et al.
[29] and Theobalt et al. [30], based on a single microphone near
the speaker. Even though human–robot interface is the most
common goal of robot audition research, there is research be-
ing conducted for other goals. Huang et al. [31] use binaural
audition to help robots navigate in their environment, allowing
a mobile robot to move toward sound-emitting objects without
colliding with those objects. The approach even works when
those objects are not visible (i.e., not in line of sight), which is
an advantage over vision.

III. SYSTEM OVERVIEW

One goal of the proposed system is to integrate the dif-
ferent steps of source separation, speech enhancement, and
speech recognition as closely as possible to maximize recogni-
tion accuracy by using as much of the available information as
possible and with a strong real-time constraint. We use a micro-
phone array composed of omnidirectional elements mounted on
the robot. The missing feature mask is generated in the time–
frequency plane since the separation module and the postfilter
already use this signal representation. We assume that all sources
are detected and localized by an algorithm such as [32], [33],
although our approach is not specific to any localization algo-
rithm. The estimated location of the sources is used by a linear
separation algorithm. The separation algorithm we use is a mod-
ified version of the geometric source separation (GSS) approach
proposed by Parra and Alvino [34], designed to suit our needs for
real-time- and real-life applications. We show that it is possible
to implement the separation with relatively low complexity that
grows linearly with the number of microphones. The method
is interesting for use in the mobile robotics context because it
makes it easy to dynamically add or remove sound sources as
they appear or disappear. The output of the GSS still contains
residual background noise and interference, which we further
attenuate through a multichannel postfilter. The novel aspect of
this postfilter is that, for each source of interest, the noise es-
timate is decomposed into stationary and transient components
assumed to be due to leakage between the output channels of
the initial separation stage. In the results, the performance of
that postfilter is shown to be superior to those obtained when
considering each separated source independently.
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Fig. 1. Overview of the separation system with the postfilter being used both
to improve the audio quality and to estimate the missing feature mask.

The postfilter that we use can not only reduce the amount
of noise and interference, but its behavior provides useful in-
formation, which is used to evaluate the reliability of different
regions of the time–frequency plane for the separated signals.
Based also on the ability of the postfilter to model indepen-
dently background noise and interference, we propose a novel
way to estimate the missing feature mask to further improve
speech recognition accuracy. This also has the advantage that
acoustic models trained on clean data can be used and that no
multicondition training is required.

The structure of the proposed system is shown in Fig. 1 and
its four main parts are:

1) linear separation of the sources, implemented as a variant
of the GSS algorithm;

2) multichannel postfiltering of the separated output;
3) computation of the missing feature mask from the postfil-

ter output;
4) speech recognition using the separated audio and the miss-

ing feature mask.

IV. GEOMETRIC SOURCE SEPARATION

Although the work we present can be adapted to systems with
any linear source separation algorithm, we propose to use the
GSS algorithm because it is simple and well suited to a mobile
robotics application. More specifically, the approach has the
advantage that it can make use of the location of the sources.
In this work, we only make use of the direction information,
which can be obtained with a high degree of accuracy using
the method described in [3]. It was shown in [32] that distance
can be estimated as well. The use of location information is
important when new sources are observed. In that situation, the
system can still provide acceptable separation performance (at
least equivalent to the delay-and-sum beamformer), even if the
adaptation has not yet taken place.

The method operates in the frequency domain using a frame
length of 21 ms (1024 samples at 48 kHz). Let Sm(k, �) be
the real (unknown) sound source m at time-frame � and for
discrete frequency k. We denote as s(k, �) the vector of the
sources Sm(k, �) and matrix A(k) as the transfer function from
the sources to the microphones. The signal received at the mi-
crophones is, thus, given by

x(k, �) = A(k)s(k, �) + n(k, �) (1)

where n(k, �) is the noncoherent background noise received
at the microphones. The matrix A(k) can be estimated using
the result of a sound localization algorithm by assuming that all
transfer functions have unity gain and that no diffraction occurs.
The elements of A(k) are, thus, expressed as

aij(k) = e−2πkδij (2)

where δij is the time delay (in samples) to reach microphone i
from source j.

The separation result is then defined as y(k, �) =
W(k, �)x(k, �), where W(k, �) is the separation matrix that
must be estimated. This is done by providing two constraints
(the index � is omitted for the sake of clarity):

1) decorrelation of the separation algorithm outputs (second-
order statistics are sufficient for nonstationary sources),
expressed as Ryy(k) − diag [Ryy(k)] = 0.

2) geometric constraint W(k)A(k) = I, which ensures
unity gain in the direction of the source of interest and
places zeros in the direction of interferences.

In theory, constraint 2) could be used alone for separation (the
method is referred to as LS-C2 [34]), but this is insufficient in
practice, as the method does not take into account reverberation
or errors in localization. It is also subject to instability if A(k)
is not invertible at a specific frequency. When used together,
constraints 1) and 2) are too strong. For this reason, we use a
“soft” constraint (refereed to as GSS-C2 in [34]) combining 1)
and 2) in the context of a gradient descent algorithm.

Two cost functions are created by computing the square of the
error associated with constraints 1) and 2). These cost functions
are defined as, respectively

J1(W(k)) = ‖Ryy(k) − diag [Ryy(k)] ‖2 (3)

J2(W(k)) = ‖W(k)A(k) − I‖2 (4)

where the matrix norm is defined as ‖M‖2 = trace[MMH ] and
is equal to the sum of the square of all elements in the matrix.
The gradient of the cost functions with respect to W(k) is equal
to [34]

∂J1(W(k))
∂W∗(k)

= 4E(k)W(k)Rxx(k) (5)

∂J2(W(k))
∂W∗(k)

= 2 [W(k)A(k) − I]A(k) (6)

where E(k) = Ryy(k) − diag [Ryy(k)].
The separation matrix W(k) is then updated as follows:

Wn+1(k) = Wn(k) − µ

[
α(k)

∂J1(W(k))
∂W∗(k)

+
∂J2(W(k))

∂W∗(k)

]

(7)
where α(f) is an energy normalization factor equal to
‖Rxx(k)‖−2 and µ is the adaptation rate.

The difference between our implementation and the original
GSS algorithm described in [34] lies in the way the correla-
tion matrices Rxx(k) and Ryy(k) are computed. Instead of
using several seconds of data, our approach uses instantaneous
estimates, as used in the stochastic gradient adaptation of the
least-mean square (LMS) adaptive filter [35]. We, thus, assume
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that

Rxx(k) = x(k)x(k)H (8)

Ryy(k) = y(k)y(k)H . (9)

It is, then, possible to rewrite (5) as

∂J1(W(k))
∂W∗(k)

= 4 [E(k)W(k)x(k)]x(k)H (10)

which only requires matrix-by-vector products, greatly reduc-
ing the complexity of the algorithm. Similarly, the normaliza-
tion factor α(k) can also be simplified as [‖x(k)‖2]−2. With a
small update rate, it means that the time averaging is performed
implicitly. In early experiments, the instantaneous estimate of
the correlation was found to have no significant impact on the
performance of the separation, but is necessary for real-time
implementation.

The weight initialization we use corresponds to a delay-and-
sum beamformer, referred to as the I1 (or C1) initialization
method in [34]. Such initialization ensures that prior to adapta-
tion, the performances are at worst equivalent to a delay-and-
sum beamformer. In fact, if only a single source is present, our
algorithm is strictly equivalent to a delay-and-sum beamformer
implemented in the frequency domain.

V. MULTICHANNEL POSTFILTER

To enhance the output of the GSS algorithm presented in
Section IV, we derive a frequency-domain postfilter that is based
on the optimal estimator originally proposed by Ephraim and
Malah [36], [37]. Several approaches to microphone array post-
filtering have been proposed in the past. Most of these postfil-
ters address reduction of stationary background noise [38], [39].
Recently, a multichannel postfilter taking into account nonsta-
tionary interferences was proposed by Cohen [40]. The novelty
of our postfilter resides in the fact that, for a given channel
output of the GSS, the transient components of the corrupting
sources are assumed to be due to leakage from the other chan-
nels during the GSS process. Furthermore, for a given channel,
the stationary and the transient components are combined into
a single noise estimator used for noise suppression, as shown in
Fig. 2. In addition, we explore different suppression criteria (α
values) for optimizing speech recognition instead of perceptual
quality. Again, when only one source is present, this postfilter is
strictly equivalent to standard single-channel noise suppression
techniques.

A. Noise Estimation

This section describes the estimation of noise variances that
are used to compute the weighting function Gm(k, �) by which
the outputs Ym(k, �) of the GSS are multiplied to generate a
clean signal whose spectrum is denoted Ŝm(k, �). The noise
variance estimation λm(k, �) is expressed as

λm(k, �) = λstat.
m (k, �) + λleak

m (k, �) (11)

where λstat.
m (k, �) is the estimate of the stationary component of

the noise for source m at frame � for frequency k, and λleak
m (k, �)

is the estimate of source leakage.

Fig. 2. Overview of the postfilter. Xn(k, �), n = 0 . . . N − 1: Microphone
inputs, Ym(k, �), m = 0 . . . M − 1: Inputs to the postfilter, Ŝm(k, �) =
Gm(k, �)Ym(k, �), m = 0 . . . M − 1: Postfilter outputs.

We compute the stationary noise estimate λstat.
m (k, �) using

the minima-controlled recursive average (MCRA) technique
proposed by Cohen [41].

To estimate λleak
m , we assume that the interference from other

sources has been reduced by a factor η (typically −10 dB ≤
η ≤ −3 dB) by the separation algorithm (GSS). The leakage
estimate is, thus, expressed as

λleak
m (k, �) = η

M−1∑
i=0,i �=m

Zi(k, �) (12)

where Zm(k, �) is the smoothed spectrum of the mth source,
Ym(k, �), and is recursively defined (with αs = 0.7) as

Zm(k, �) = αsZm(k, � − 1) + (1 − αs) |Ym(k, �)|2 . (13)

It is worth noting that if η = 0 or M = 1, then the noise estimate
becomes λm(k, �) = λstat.

m (k, �) and our multisource postfilter
is reduced to a single-source postfilter.

B. Suppression Rule

From here on, unless otherwise stated, the m index and the
� arguments are omitted for clarity and the equations are given
for each m and for each �. The proposed noise suppression rule
is based on minimum mean-square error (MMSE) estimation
of the spectral amplitude in the (|X(k)|α) domain. The power
coefficient α is chosen to maximize the recognition results.

Assuming that speech is present, the spectral amplitude esti-
mator is defined by

Â(k) = (E [|S(k)|α |Y (k) ])
1
α = GH1(k) |Y (k)| (14)

where GH1(k) is the spectral gain assuming that speech is
present.

The spectral gain for arbitrary α is derived from [37, eq. (13)]

GH1(k) =

√
υ(k)

γ(k)

[
Γ

(
1 +

α

2

)
M

(
−α

2
; 1;−υ(k)

)] 1
α

(15)

where M(a; c;x) is the confluent hypergeometric func-

tion, γ(k) ∆= |Y (k)|2/λ(k) and ξ(k) ∆= E[|S(k)|2]/λ(k) are,



746 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 4, AUGUST 2007

respectively, the a posteriori signal-to-noise ratio (SNR) and the

a priori SNR. We also have υ(k) ∆= γ(k)ξ(k)/(ξ(k) + 1) [36].
The a priori SNR ξ(k) is estimated recursively as [36]

ξ̂(k, �) = αpG
2
H1

(k, � − 1)γ(k, � − 1)

+ (1 − αp)max {γ(k, �) − 1, 0} . (16)

When taking into account the probability of speech presence,
we obtain the modified spectral gain

G(k) = p1/α(k)GH1(k) (17)

where p(k) is the probability that speech is present in the fre-
quency band k and given by

p(k) =
{

1 +
q̂(k)

1 − q̂(k)
(1 + ξ(k)) exp (−υ(k))

}−1

. (18)

The a priori probability of speech presence q̂(k) is computed
as in [41] using speech measurements on the current frame for
a local frequency window, a larger frequency, and for the whole
frame.

VI. INTEGRATION WITH SPEECH RECOGNITION

Robustness against noise in conventional3 automatic speech
recognition (ASR) is being extensively studied, in particular, in
the AURORA project [42], [43]. To realize noise-robust speech
recognition, multicondition training (training on a mixture of
clean speech and noises) has been studied [44], [45]. This is
currently the most common method for vehicle and telephone
applications. Because an acoustic model obtained by multicon-
dition training reflects all expected noises in specific conditions,
recognizer’s use of the acoustic model is effective as long as the
noise is stationary. This assumption holds, for example, with
background noise in a vehicle and on a telephone. However,
multicondition training is not effective for mobile robots, since
those usually work in dynamically changing noisy environments
and, furthermore, multicondition training requires an important
amount of data to learn from.

Source separation and speech enhancement algorithms for ro-
bust recognition are another potential alternative for automatic
speech recognition on mobile robots. However, their common
use is to maximize the perceptual quality of the resulting signal.
This is not always effective since most preprocessing source
separation and speech enhancement techniques distort the spec-
trum and, consequently, degrade features, reducing the recogni-
tion rate (even if the signal is perceived to be cleaner by naı̈ve
listeners [46]). For example, the work of Seltzer et al. [47] on
microphone arrays addresses the problem of optimizing the ar-
ray processing specifically for speech recognition (and not for a
better perception). Recently, Araki et al. [48] have applied ICA
to the separation of three sources using only two microphones.
Aarabi and Shi [49] have shown speech-enhancement feasibil-
ity, for speech recognition, using only the phase of the signals
from an array of microphones.

3We use conventional in the sense of speech recognition for applications
where a single microphone is used in a static environment such as a vehicle or
an office.

A. Missing Features Theory and Speech Recognition

Research of confidence islands in the time–frequency plane
representation has been shown to be effective in various appli-
cations and can be implemented with different strategies. One
of the most effective is the missing feature strategy. Cooke et al.
[50], [51] propose a probabilistic estimation of a mask in re-
gions of the time–frequency plane where the information is not
reliable. Then, after masking, the parameters for speech recog-
nition are generated and can be used in conventional speech
recognition systems. They obtain a significant increase in recog-
nition rates without any explicit modeling of the noise [52]. In
this scheme, the mask is essentially based on the dominance
speech/interference criteria and a probabilistic estimation of the
mask is used.

Conventional missing feature theory-based ASR is a hidden
Markov model (HMM)-based recognizer, whose output proba-
bility (emission probability) is modified to keep only the reli-
able feature distributions. According to the work by Cooke et al.
[51], HMMs are trained on clean data. Density in each state Si

is modeled using mixtures of M Gaussians with diagonal-only
covariance.

Let f(x|S) be the output probability density of feature vector
x in state Si, and P (j|Si) represent the mixture coefficients
expressed as a probability. The output probability density is
defined by

f(x|Si) =
M∑

j=1

P (j|Si)f(x|j, Si). (19)

Cooke et al. [51] propose to transform (19) to take into consider-
ation the only reliable features xr from x and to remove the un-
reliable features. This is equivalent to using the marginalization
probability density functions f(xr|j, Si) instead of f(x|j, Si)
by simply implementing a binary mask. Consequently, only
reliable features are used in the probability calculation, and
the recognizer can avoid undesirable effects due to unreliable
features.

Hugo van Hamme [53] formulates the missing feature ap-
proach for speech recognizers using conventional parameters
such as mel frequency cepstral coefficients (MFCC). He uses
data imputation according to Cooke [51] and proposes a suitable
transformation to be used with MFCC for missing features. The
acoustic model evaluation of the unreliable features is modi-
fied to express that their clean values are unknown or confined
within bounds. In a more recent paper, Hugo van Hamme [54]
presents speech recognition results by integrating harmonicity
in the SNR for noise estimation. He uses only static MFCC as,
according to his observations, dynamic MFCC do not increase
sufficiently the speech recognition rate when used in the context
of missing features framework. The need to estimate pitch and
voiced regions in the time–space representation is a limit to this
approach. In a similar approach, Raj et al. [55] propose to mod-
ify the spectral representation to derive cepstral vectors. They
present two missing feature algorithms that reconstruct spectro-
grams from incomplete noisy spectral representations (masked
representations). Cepstral vectors can be derived from the recon-
structed spectrograms for missing feature recognition. Seltzer
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et al. [56] propose the use of a Bayesian classifier to determine
the reliability of spectrographic elements. Ming, Jancovic, and
others [57], [58] propose the probabilistic union model as an
alternative to the missing feature framework. According to the
authors, methods based on the missing feature framework usu-
ally require the identification of the noisy bands. This identifica-
tion can be difficult for noise with unknown, time-varying band
characteristics. They designed an approach for speech recog-
nition involving partial, unknown corrupted frequency-bands.
In their approach, they combine the local frequency-band in-
formation based on the union of random events, to reduce the
dependence of the model on information about the noise. Cho
and Oh [59] apply the union model to improve robust speech
recognition based on frequency bands selection. From this selec-
tion, they generate “channel-attentive” mel frequency cepstral
coefficients. Even if the use of missing features for robust recog-
nition is relatively recent, many applications have already been
designed.

To avoid the use of multicondition training, we propose to
merge a multimicrophone source separation and speech en-
hancement system with the missing feature approach. Very little
work has been done with arrays of microphones in the context
of missing feature theory. To our knowledge, only McCowan
et al. [60] apply the missing feature framework to microphone
arrays. Their approach defines a missing feature mask based
on the input-to-output ratio of a postfilter, but is, however, only
validated on stationary noise.

Some missing feature mask techniques can also require the
estimation of prior characteristics of the corrupting sources or
noise. They usually assume that the noise or interference charac-
teristics vary slowly with time. This is not possible in the context
of a mobile robot. We propose to estimate quasi-instantaneously
the mask (without preliminary training) by exploiting the post-
filter outputs along with the local gains (in the time–frequency
plane representation) of the postfilter. These local gains are
used to generate the missing feature mask. Thus, the speech
recognizer with clean acoustic models can adapt to the distorted
sounds by consulting the postfilter feature missing masks. This
approach is also a solution to the automatic generation of si-
multaneous missing feature masks (one for each speaker). It
allows the use of simultaneous speech recognizers (one for each
separated sound source) with their own mask.

B. Reliability Estimation

The postfilter uses adaptive spectral estimation of background
noise and interfering sources to enhance the signal produced dur-
ing the initial separation. The main idea lies in the fact that, for
each source of interest, the noise estimate is decomposed into
stationary and transient components assumed to be due to leak-
age between the output channels of the initial separation stage. It
also provides useful information concerning the amount of noise
present at a certain time, for each particular frequency. Hence,
we use the postfilter to estimate a missing feature mask that
indicates how reliable each spectral feature is when performing
recognition.

C. Computation of Missing Feature Masks

The missing feature mask is a matrix representing the relia-
bility of each feature in the time–frequency plane. More specif-
ically, this reliability is computed for each frame and for each
mel-frequency band. This reliability can be either a continuous
value from 0 to 1, or a discrete value of 0 or 1. In this paper,
discrete masks are used. It is worth mentioning that computing
the mask in the mel-frequency band domain means that it is
not possible to use MFCC features, since the effect of the DCT
cannot be applied to the missing feature mask.

For each mel-frequency band, the feature is considered re-
liable if the ratio of the postfilter output energy over the input
energy is greater than a threshold T . The reason for this choice
is that it is assumed that the more noise is present in a certain
frequency band, the lower the postfilter gain will be for that
band.

One of the dangers of computing missing feature masks based
on an SNR measure is that there is a tendency to consider
all silent periods as nonreliable, because they are dominated
by noise. This leads to large time–frequency areas where no
information is available to the ASR, preventing it from correctly
identifying silence (we made this observation from practice).
For this reason, it is desirable to consider as reliable at least
some of the silence, especially when there is no nonstationary
interference.

The missing feature mask is computed in two steps: for each
frame � and for each mel frequency band i

1) We compute a continuous mask m�(i) that reflects the
reliability of the band

m�(i) =
Sout

� (i) + N�(i)
Sin

� (i)
(20)

where Sin
� (i) and Sout

� (i) are, respectively, the postfilter
input and output energy for frame � at mel-frequency band
i, and N�(i) is the background noise estimate. The values
Sin

� (i), Sout
� (i), and N�(i) are computed using a mel-scale

filterbank with triangular bandpass filters, based on linear-
frequency postfilter data.

2) We deduce a binary mask M�(i). This mask will be used
to remove the unreliable mel frequency bands at frame �

M�(i) =
{

1, m�(i) > T

0, otherwise
(21)

where T is the mask threshold. We use the value T = 0.25,
which produces the best results over a range of experi-
ments. In practice the algorithm is not very sensitive to T
and all values in the [0.15, 0.30] interval generally produce
equivalent results.

In comparison to McCowan et al. [60], the use of the multisource
postfilter allows a better reliability estimation by distinguishing
between interference and background noise. We include the
background noise estimate N�(i) in the numerator of (20) to
ensure that the missing feature mask equals 1 when no speech
source is present (as long as there is no interference). Using a
more conventional postfilter as proposed by McCowan et al. [60]
and Cohen et al. [40] would not allow the mask to preserve
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Fig. 3. Spectrograms for separation of three speakers, 90◦ apart with postfilter. (a) Signal as captured at microphone #1. (b) Separated right speaker. (c) Separated
center speaker. (d) Separated left speaker. (e)–(g) Corresponding mel-frequency missing feature mask for static features with reliable features (M�(i) = 1) shown
in black. Time is represented on the x-axis and frequency (0–8 kHz) on the y-axis.

silence features, which is known to degrade ASR accuracy.
The distinction between background noise and interference also
reflects the fact that background noise cancellation is generally
more efficient than interference cancellation.

An example of a computed missing feature mask is shown in
Fig. 3. It is observed that the mask indeed preserves the silent
periods and considers unreliable the regions of the spectrum
dominated by other sources. The missing feature mask for delta-
features is computed using the mask for the static features. The
dynamic mask ∆M�(i) is computed as

∆M�(i) =
2∏

k=−2

M�−k(i) (22)

and is nonzero only when all the mel features used to compute
the delta-cepstrum are deemed reliable.

D. Speech Analysis for Missing Feature Masks

Since MFCC cannot be easily used directly with a missing
feature mask and as the postfilter gains are expressed in the
time–frequency plane, we use spectral features that are derived
from MFCC features with the inverse discrete cosine transform
(IDCT). The detailed steps for feature generation are as follows.

1) [FFT] The speech signal sampled at 16 kHz is analyzed
using a 400-sample FFT with a 160-sample frame shift.

2) [Mel] The spectrum is analyzed by a 24th-order mel-scale
filter bank.

3) [Log] The mel-scale spectrum of the 24th order is con-
verted to log-energies.

4) [DCT] The log mel-scale spectrum is converted by discrete
cosine transform to the Cepstrum.

5) [Lifter] Cepstral features 0 and 13–23 are set to zero so as
to make the spectrum smoother.

6) [CMS] Convolutive effects are removed using Cepstral
mean subtraction.

7) [IDCT] The normalized Cepstrum is transformed back to
the log mel-scale spectral through an inverse DCT.

8) [Differentiation] The features are differentiated in the
time, producing 24 delta features in addition to the static
features.

The [CMS] step is necessary to remove the effect of convo-
lutive noise, such as reverberation and microphone frequency
response.

The same features are used for training and evaluation. Train-
ing is performed on clean speech, without any effect from the
postfilter. In practice, this means that the acoustic model does
not need to be adapted in any way to our method. During eval-
uation, the only difference with a conventional ASR is the use
of the missing feature mask as represented in (19).

E. The Missing Feature-Based Automatic Speech Recognizer

Let f(x|s) be the output probability density of feature vector
x in state S. The output probability density is defined by (19),
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Fig. 4. SIG 2 robot with eight microphones (two are occluded).

and becomes

f(x |S) =
M∑

k=1

P (k |S)f(xr | k, S) (23)

where M is the dimensionality of the Gaussian mixture, and
xr are the reliable features in x. This means that only reliable
features are used in probability calculation, and, thus, the rec-
ognizer can avoid undesirable effects due to unreliable features.
We used two speech recognizers. The first one is based on the
CASA Tool Kit (CTK) [52] hosted at Sheffield University, U.K.4

and the second on is the Julius open-source Japanese ASR [61]
that we extended to support the previously mentioned decod-
ing process.5 According to our preliminary experiments with
these two recognizers, CTK provides slightly better recognition
accuracy, while Julius runs much faster.

VII. RESULTS

Our system is evaluated on the SIG2 humanoid robot, on
which eight omnidirectional (for the system to work in all di-
rections) microphones are installed as shown in Fig. 4. The
microphone positions are constrained by the geometry of the
robot because the system is designed to be fitted on any robot.
All microphones are enclosed within a 22 cm × 17 cm × 47 cm
bounding box. To test the system, three Japanese speakers (two
males, one female) are recorded simultaneously: one in front,
one on the left, and one on the right. In nine different experi-
ments, the angle between the center speaker and the side speak-
ers is varied from 10 to 90◦ degrees. The speakers are placed 2-m
away from the robot, as shown in Fig. 5. The distance between
the speakers and the robot was not found to have a significant
impact on the performance of the system. The only exception is
for short distances (<50 cm) where performance decreases due
to the far-field assumption we make in this particular work. The
position of the speakers used for the GSS algorithm is computed
automatically using the algorithm described in [3].

The room in which the experiment took place is 5 m × 4 m
and has a reverberation time (−60 dB) of approximately 0.3 s.

4http://www.dcs.shef.ac.uk/research/groups/spandh/projects/respite/ctk/
5http://julius.sourceforge.jp/

Fig. 5. Position of the speakers relative to the robot in the experimental setup.

The postfilter parameter α = 1 (corresponding to a short-term
spectral amplitude (STSA) MMSE estimator) is used since it
was found to maximize speech recognition accuracy.6 When
combined together, the GSS, postfilter, and missing feature mask
computation require 25% of a 1.6-GHz Pentium-M to run in
real-time when three sources are present.7 Speech recognition
complexity is not reported as it usually varies greatly between
different engines and settings.

A. Separated Signals

Spectrograms showing separation of the three speakers8 are
shown in Fig. 3, along with the corresponding mask for static
features. Even though the task involves nonstationary interfer-
ence with the same frequency content as the signal of interest,
we observe that our postfilter is able to remove most of the
interference. Informal subjective evaluation has confirmed that
the postfilter has a positive impact on both quality and intelligi-
bility of the speech. This is confirmed by improved recognition
results.

B. Speech Recognition Accuracy

We report speech recognition experiments obtained using the
CTK toolkit. Isolated word recognition on Japanese words is
performed using a triphone acoustic model. We use a speaker-
independent three-state model trained on 22 speakers (10 males,
12 females), not present in the test set. The test set includes 200
different ATR phonetically-balanced isolated Japanese words
(300 s) for each of the three speakers and is used on a 200-
word vocabulary (each word spoken once). Speech recognition
accuracy on the clean data (no interference, no noise) varies
between 94 and 99%.

Speech recognition accuracy results are presented for five
different conditions:

1) single-microphone recording;
2) GSS only;
3) GSS with postfilter (GSS+PF);
4) GSS with postfilter using MFCC features (GSS+PF w/

MFCC);
5) GSS with postfilter and missing feature mask

(GSS+PF+MFT).

6The difference between α = 1 and α = 2 on a subset of the test set was less
than one percent in recognition rate

7Source code for part of the proposed system is available at http://manyears.
sourceforge.net/

8Audio signals and spectrograms for all three sources are available at:
http://www.gel.usherbrooke.ca/laborius/projects/Audible/sap/
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Fig. 6. Speech recognition accuracy results for intervals ranging from 10 to
90◦ averaged over the three speakers.

Results are shown in Fig. 6 as a function of the angle be-
tween sources and averaged over the three simultaneous speak-
ers. As expected, the separation problem becomes more difficult
as sources are located closer to each other because the difference
in the transfer functions becomes smaller. We find that the pro-
posed system (GSS+PF+MFT) provides a reduction in relative
error rate compared to GSS alone that ranges from 10 to 55%,
with an average of 42%. The postfilter provides an average of
24% relative error-rate reduction over use of GSS alone. The
relative error-rate reduction is computed as the difference in er-
rors divided by the number of errors in the reference setup. The
results of the postfilter with MFCC features (4) are included to
show that the use of mel spectral features only has a small effect
on the ASR accuracy.

While they seem poor, the results with GSS can only be
explained by the highly nonstationary interference coming from
the two other speakers (especially when the speakers are close
to each other) and the fact that the microphones’ placement is
constrained by the robot dimensions. The single-microphone
results are provided only as a baseline. The results are very low
because a single omnidirectional microphone does not have any
acoustic directivity.

In Fig. 7 we compare the accuracy of the multisource postfilter
to that of a “classic” (single-source) postfilter that removes back-
ground noise but does not take interference from other sources
into account (η = 0). Because the level of background noise is
very low, the single-source postfilter has almost no effect and
most of the accuracy improvement is due to the multisource
version of the postfilter, which can effectively remove part of
the interference from the other sources. The proposed multi-
source postfilter was also shown in [62] to be more effective for
multiple sources than the multichannel approach in [40].

VIII. CONCLUSION

In this paper we demonstrate a complete multimicrophone
speech recognition system capable of performing speech recog-
nition on three simultaneous speakers. The system closely in-

Fig. 7. Effect of the multisource postfilter on speech recognition accuracy.

tegrates all stages of source separation and missing features
recognition so as to maximize accuracy in the context of si-
multaneous speakers. We use a linear source separator based on
a simplification of the GSS algorithm. The nonlinear postfilter
that follows the initial separation step is a short-term spectral
amplitude MMSE estimator. It uses a background noise estimate
as well as information from all other sources obtained from the
GSS algorithm.

In addition to removing part of the background noise and in-
terference from other sources, the postfilter is used to compute a
missing feature mask representing the reliability of mel spectral
features. The mask is designed so that only spectral regions dom-
inated by interference are marked as unreliable. When compared
to the GSS alone, the postfilter contributes to a 24% (relative)
reduction in the word error rate while the use of the missing fea-
ture theory-based modules yields a reduction of 42% (also when
compared to GSS alone). The approach is specifically designed
for recognition on multiple sources and we did not attempt to
improve speech recognition of a single source with background
noise. In fact, for a single sound source, the proposed work is
strictly equivalent to commonly used single-source techniques.

We have shown that robust simultaneous speakers speech
recognition is possible when combining the missing feature
framework with speech enhancement and source separation with
an array of eight microphones. To our knowledge, there is no
work reporting multispeaker speech recognition using missing
feature theory. This is why this paper is meant more as a proof
of concept for a complete auditory system than a comparison
between algorithms for performing specific signal processing
tasks. Indeed, the main challenge here is the adaptation and
integration of the algorithms on a mobile robot so that the system
can work in a real environment (moderate reverberation) and
that real-time speech recognition with simultaneous speakers
be possible.

In future work, we plan to perform the speech recognition
with moving speakers and adapt the postfilter to work even
in highly reverberant environments, in the hope of developing
new capabilities for natural communication between robots and
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humans. Also, we have shown that the cepstral-domain speech
recognition usually performs slightly better. Hence, it would
be desirable for the technique to be generalized for the use of
cepstral features instead of spectral features.
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