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An  Alternative  Approach to Linearly  Constrained  Adaptive  Beamforming 

Abstrocr-A beamforming structure is presented which can be  used 
to implement a wide variety of linearly constrained adaptive array 
processors. The structure is designed for use with arrays which  have 
been time-delay steered such that the desired s igna l  of interest 
appears approximately in phase at the steered outputs. One  major 
advantage of the new structure is the constraints can be implemented 
using simple hardware differencing amplifiers. The structure is shown 
to incorporate  algorithms which have been suggested previously for 
use in  adaptive heamforming as well as to include new approaches. It 
is also particularly useful for studying the effects of steering errors on 

1 array performance. Numerical examples illustrating the performance 
of the  structure  are presented. 

T 
INTRODUCTION 

HIS PAPER describes a  simple time-varying beamformer 
which can be used to combine  the  outputs of an  array of 

sensors. The  beamformer is constrained to filter the “desired” 
signal with  a  fiiter having a prescribed gain and phase response. 
The “desired” signal is identified  by  time-delay  steering the 
sensor outputs so that  any signal incident on the array from 
the direction of interest appears  as an identical replica at  the 
outputs of the steering delays. All other signals received by  the 
array  which do  not have this  property  are considered to be 
noise and/or interference. The purpose of the beamformer is 
to minimize the  effects of noise and  interference  at  the array 
output while simultaneously  maintaining the prescribed fre- 
quency  response in  the direction of the desired signal. 

Beamformers of this type are termed linearly constrained 
array processors and have been  studied by several authors 
including Levin [ 1 1, Lacoss [ 21, Kobayashi [ 31, Booker and 
Ong [ 41, Frost [5 1,  and Applebaum  and  Chapman [ 61. The 
last five of these authors describe iterative or  continuously 
adaptive  beamformers  in which the beamforming  coefficients 
adjust to new values as each new set of samples of array  sensor 
outputs  are received. Adaptive methods are of particular 
interest in  those problems  in  which the  interference  properties 
are either spatially or  temporarily  time varying. 

The purpose of this paper is to present the linearly  con- 
strained  adaptive  algorithm, due to Frost [ 5 ] ,  using an  alter- 
native  beamforming  model. This presentation illustrates the 
fundamental properties of the algorithm  in an exceedingly 
simple  fashion.  It also allows for generalizations not available 
with Frost’s method.  The basic structure of the beamforming 
model has been suggested by Applebaum and Chapman [ 6 ] .  
In this paper we describe the  structure  in detail and give exact 
algorithm  comparisons for a variety of linearly constrained 
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beamformers. The  structure is shown  to  be a  direct conse- 
quence of Frost’s method. One major  advantage of our ap- 
proach is an assessment of the performance  degradation caused 
by  the steering and/or gain errors  in  the array sensors. In most 
practical situations  the  theoretically ideal requirement of an 
“identical  replica” of the desired signal, at  the  output of each 
steering  delay, is seldom met.  The effects of these errors on 
overall beamformer performance is easily modeled using our 
approach.  For example, it is shown  that these  effects  are 
particularly detrimental  under  conditions of high signal-to- 
noise ratio (SNR). 

A  second  reason for this presentation is t o  enumerate cer- 
tain difficulties  which may arise with the use of constrained 
adaptive  array processors which do  not  incorporate Frost’s 
error-correction feature. Of the papers  referenced  above, 
four (see [ 21 -[41 and [ 71 ) use an algorithm based on the 
gradient projection  approach [8].  (Levin’s approach was 
nonadaptive  and utilized  matrix  inversion  techniques.) 

In  this paper we first review Frost’s algorithm  which is not 
susceptible to roundoff  error and  requires relatively few addi- 
tional  computations per adaptive cycle. A simple geometric 
interpretation illustrating the  effects of roundoff  errors on his 
algorithm and on gradient projection is presented. The error- 
correcting properties of the  approach  are identified using this 
illustration. 

We then show that  the algorithm  can  be interpreted using a 
new beamforming  model, termed  the adaptive  sidelobe cancel- 
ing  beamformer. This structure illustrates the  constraint fea- 
tures of the algorithm and shows  how additional  constraints 
can be added. The error-correcting features are also elucidated. 
Sidelobe canceling is shown to be closely related to  the  method 
of adaptive noise canceling described by Widrow et al. [91. 
As a  consequence  results derived in adaptive  noise canceling 
can be  applied  directly to  the linearly constrained adaptive 
beamformer. 

LINEARLY CONSTRAINED ADAPTIVE BEAMFORMING 

We denote  the sampled output  of  the  mth time-delayed 
sensor by xm(k) .  A total of M sensors are assumed to be 
present in  the assumptions of ideal  steering: 

Xm(k)  = s (k)  + n,(k). 

In  this expression s(k)  is the desired signal and nm(k)  repre- 
sents the  totality of noise and  interference observed at  the 
output of the  mth steered sensor. A  beamformed output 
signal y ( k )  is formed as the sum of delayed  and weighted 
xm(k) .  Specifically, if am,l is used to represent  the weight used 
for  the  mth channel at delay 2 ,  then 
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Note  that a total of 2K + 1 samples are used from each  chan- this  paper we are concerned  with  Frost's procedure [ 5 ] ,  in 
ne1 and  that  the zero time reference is at  the filter midpoint. which 

let Az and X(k - I )  represent the  filter coefficient and signal Az(k) = py(k)[ q,(k -[)I - X(k - I ) ]  
vectors  at  the Zth delay point, i.e., 

Matrix notation can be used to  simplify this notation. We 

X T ( k  - I )  = [x1 (k - Z), x2(k - I ) ,  --, x&& - I ) ]  (4) and 

where  superscript T denotes transpose.  The output signal of 
( 2 )  then becomes q,(k - I) = - XT(k - I )  1 

1 

M 
K 

y ( k )  = AT(I)X(k - I ) .  
I=-K 

I 
Under  the ideal steering  assumption in (l), the signal vector The adaptive step size I-( is a scalar controls both the 
x(k - Z) becomes convergence rate and  steady-state noise behavior of the algo- 

rithm [ 9 ]  and is normalized  by the  total  power  contained in 
X @ - - ) =  s(k-Z)l + N ( k - I )  ( 6 )  the beamformer. Thus 

where 1 is a column vector of M ones  and N(k - Z) is a vector 
of noise and interference defined  in  a manner analogous to 
(4). 

Prescribed gain and phase  response for  the desired signal is 
ensured  by constraining the  sums of channel weights at each 
delay point  to be specific values. Thus if f(I) is used to denote 
the sum for  the  set of weights at delay I then 

AT(I) 1 = f(Z). ( 7 )  

Under this  constraint  the  portion of the  output  due to desired 
signal reduces to 

fY 

Convergence of either algorithm is assured if 0 < a < 1. 
Other power  estimates involving time averaging may be em- 
ployed without significantly affecting  performance. 

Frost's  procedure  differs from  that used in gradient projec- 
tion [7] by the  addition of the last two  terms in (1 1).  These 
terms involve a total  number of additional (2K + 1)nl  adds 
and 2K + 1  multiples.  They are necessary, however, in that 
they prevent the accumulation of computational  errors which 
may occur on  any  iteration of the algorithm. 

Thus  the f(l) represent the impulse  response of a finitedura- Error Effects in Linearly  Constrained Beamforming 
tion impulse-response (FIR) filter having length 2K + 1. One 
commonly used constraint is that of zero distortion in which 

f(Z) = S ( I ) ,  where S(1) is the discrete  impulse function. The 
FIR  filter  constraint  function is normalized  such that 

The  effects of errors may be illustrated by examining the 
constraints (7)  for  the adaptive  algorithm  in (10) and (1 1). 
We assume that in the algorithm implementation,  the com- 
putation of the signal sum qx(k  - I )  and the weight sum 

FTl  = 1,  (9a) 
a,,z(k) in (1 3) introduced  the following errors: 

The objective of linearly  constrained  adaptive  beamforming 
is then  to find filter coefficients A(Z) which satisfy (7) and 1 
simultaneously reduce  the average value of the  square of the M 
output noise component. This is equivalent to finding those 
coefficients which result in minimum output noise power or equivalently, the  current weight vector A d k )  is presumed 
subject to  the  constraint of the prescribed desired signal to be slightly off  the  constraint, i.e., 
filtering. 

In adaptive  beamforming the  filter coefficients  are  time 1 = f(l) + EA (k) .  ( 1 6 ~ )  
varying  and change as each new set of samples of sensor out- 
puts is received. Thus if Al(k) is used to  denote  the values at The to which the next weight vector fails to meet 
time k the values at the next sampling instant k + 1 are corn- the  constraint can then be computed by solving for ~ [ * ( k  + 
puted as 1)l in (1 0) and (1 1).  Thus, using (1 6), 

4a,Z(k) = - [AzT(k)1 + (1 6b) 
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The  terms enclosed in {*} are  produced by error  correction 
position of Frost's algorithm while the first three are due to 
the  gradient projection operator. Thus if a  gradient projection 
adaptation algorithm is employed-as was the case in [ 21 -[ 41 
and [ 71 -the  constraint  error  at  step k -I- 1 is 

EA (k  -b 1) = EA ( k )  @fy(k)ex(k)  (1 8 )  

and  with  Frost's  procedure 

E A  (k -I- 1) = W Y ( k ) E x ( k ) .  (1 9) 

The cumulative error  effects of gradient projection ob- 
served by Shen [7] are due to  the first-order difference rela- 
tionship  in  (18). If  we assume that  the driving term pM,,(k) 
E.&) can be modeled  as  a zero-mean white random process 
with variance ue2, and  that E A ( O )  = 0, then  the gradient 
projection  constraint error  (1 8) is a Brownian motion [ lo]   or  
random walk process. Although the mean of the  error remains 
zero, its variance O A ' ( ~ )  grows linearly with the  number of 
steps, i.e., 

U A  ' ( k )  = koc2 ( 2 0 4  

for gradient projection. With the  correction  terms, however, 
the  error  at each step  has  constant variance at each iteration, 

UA 2 ( k )  = 0~'. (20b) 

A simple geometric interpretation [ 51 can also be given for 
these  effects. Consider the geometry associated with the 
gradient projection algorithm  shown  in Fig. 1. Coefficient 
vectors  meeting the desired constraint must lie  on  the planar 
subspace C defined by the vector F(9b).It is assumed that  the 
coefficient  vector Al(k) at  time k is too long and  that  the 
gradient  vector produced by the  data is gz(k)  given by 

gdk) = PY(k)X(k - 0. (21 1 

In  the gradient projection  method  the new coefficient  vector 
Al(k) is obtained by finding the projection of gl (k)  in  the 
direction of the plane C, and then by adding  this  projection 
to  the previous vector. As shown by  Fig. 1 the resulting new 
coefficient  vector will not lie on  the  constraint plane, even 
with an error-free projection  operation. 

Fig. 2 illustrates the geometry for Frost's approach.  In 
this case the new coefficient  vector is found by  projecting the 
sum of the  former vector  and the gradient in  the direction of 
the  constraint plane C. The new coefficient  vector Al(k)  is 
then  the sum of this  projected  vector and  the vector F, which 
defines C. As shown  in the diagram the new coefficients will 
lie  on  the  constraint plane regardless of the previous error 
provided that  the  projection  operation is error free. The  net 
error  induced by this method is then restricted to  the machine 
quantization  error of a single projection operation  and accu- 
mulation  does not occur. 

GENERALIZED SIDELOBE CANCELING MODEL 

The linearly  constrained  adaptive  algorithm  defined by 
(lo)-( 13) may be implemented using the  structure  shown in 
Fig. 3. Timedelay steering elements T ~ ,  72, -.e, 7~ are used to 
point  the array in  the  direction of interest. We will refer to 
this  implementation as the direct  form. Each coefficient in 

i' 

Fig. 1. Geometrical interpretation  for  gradient  projection  adaptive 
algorithm. 

Fig. 2. Geometrical interpretation for linearly  constrained  error- 
correcting  adaptive  algorithm. 
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number 
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Fig. 3. Direct form implementation of linearly  constrained  adaptive 
array  processing  algorithm. 

the beamformer is updated by the adaptive  processor, which 
computes new values using the algorithm. An alternative 
implementation which achieves precisely the same overall 
processor can be derived in  a simple manner directly from  this 
algorithm. The resulting structure is termed  the generalized 
sidelobe canceling form  and is depicted  in Fig. 4. 

This  processor consists of two distinct substructures which 
are shown as the  upper and lower processing paths. The  upper 
or conventional  beamformer path consists of a  set of fixed 
amplitude weights w C 1 ,  w C 2 ,  --, W,M which produce  non- 
adaptive-beamformed signal y , (k ) ,  

where 

This  conventional  array  beamforming  system is identical 
to  that traditionally used to process sensor array outputs with 
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Fig. 4. Generalized  sidelobe  canceling form of linearly  constrained 
adaptive  array  processing  algorithm. 

fixed  nonadaptive  coefficients. In  typical applications the 
weights W, are chosen so as to  trade off the relationship be- 
tween array beamwidth and average sidelobe level [ l l ] .  
(One widely used method employs Chebyshev polynomials 
to find  the W,.) For  the purpose of this  paper, however,  any 
method can be used to  choose the weights as the  performance 
of the overall beamformer will be characterized  in terms 
of the specific values chosen. (All wci are assumed nonzero.) 
In order to simplify notation  the coefficients in w, are  nor- 
miriized to have a  sum of unity.  That is 

W,T1= 1 

The signal y,’(k)  is  obtained by filtering y,(k) and  the  FIR 
operator containing the constraint valuesf(Z), 

K 

Y ,‘(IC) = r(k - 0. (25)  
I=-K  

The  lower  path in Fig. 4 is the sidelobe canceling path. 
It consists of a matrix preprocessor W, followed  by  a  set of 
tapped-delay lines, each  containing 2K 4- 1 weights. The pur- 
pose of W, is to block the desired signal s(k) from  the lower 
path. Since s (k )  is  common to each of the steered  sensor 
outputs  (1) blocking is ensured if the rows of W ,  sum up  to 
zero. Specificallyif  X‘(k)  is used to  denote  the  set of signals 
at  the  output of W,, then 

X’(k) = FJ(k). (26) 

In addition, if bmT is used to represent the  mth row of F,, 
we require that  the b, satisfy 

bmT1 = 0, for all m, (27)  

and that  the b, are linearly independent. As a  result X‘(k) 
can have at most M - 1 linearly&dependent  components. 
Equivalently, the row dimension of W, must be M - 1 or less. 

The lower path of the generalized sidelobe canceler gen- 
erates a scalar output  y~ (k) as the sum of delayed and weighted 
elements of X’(k). Following the  notation used to describe 
the linearly  constrained beamformer, 

K 

I= -K 

where X‘ and A’ are the M - 1 dimensional signal and coeffi- 
cient vectors. 

The overall output of the generalized sidelobe canceling 
structure y ( k )  is 

Because y ~ ( k )  contains  no desired signal terms, the response 
of the processor to  the desired signal s(k)l is that  produced 
only  by y,‘(k) .  Thus  from (22)-(25) the  output  due to the 
presence of only the desired signal satisfies the  constraint 
defined  by (9), regardless of W,. In  addition, since y A ( k )  
contains only noise and interference  terms, finding the  set of 
filter  coefficients Al‘(k) which  minimize the power contained 
in y ( k )  is equivalent to finding the minimum  variance, lin- 
early constrained  beamformer. The unconstrained least-mean- 
square (LMS) algorithm [ 121 can be employed to  adapt  the 
filter  coefficients to  the desired solution, 

The  step size 1-1 is normalized by the  total power  contained in 
the X‘(k - 2 )  using methods analogous to those described 
above . 

The algorithm  in (30), together with conditions (24)  and 
(27),  completely  defines the  operation of the generalized side- 
lobe canceling structure. Although it is not obvious, this 
structure can provide exactly  the same filtering operation as 
the constrained beamformer in Fig. 3, which uses Frost’s 
algorithm. In  addition, it can also provide fiitering operations 
which are not  the same as Frost’s procedure.  The key lies 
with the  structure of the blocking matr& W, and the conven-. 
tional beamformer W,. If the  rows of W ,  are orthogonal  (in 
addition to satisfying (27)) and if all conventional beamformer 
weights equal  l/M,  then Frost’s method is obtained. Non- 
Orthogonal rows and/or  other conventional  beamformers 
produce a  processor having the same steady-state performance 
in  a stationary  environment,  but  one which uses a different 
adaptive trajectory. 

The generalized-sidelobe canceler separates out  the con- 
straint as element W, and an  FIR  filter.  In  addition, it provides 
a  conventional  beamformer as an integral portion of its struc- 
ture. Coefficient adaptation is reduced to its simplest possible 
form: the unconstrained LMS algorithm. 

Relationship with Linearly Constrained Beamforming 

> 

The structure of the generalized sidelobe canceler can 
readily be related to the adaptive linearly constrained beam- 
former. We begin by  defining an invertible M X llrl matrix T as 

The inverse of T i s  guaranteed for_Wc and z, satisfying (24) 
and (27). In  addition,  the  product T1 is a simple unit  vector, 

T1 = [ 1, 0, 0, -., 01 T .  (32) 

Multiplying Frost’s algorithm  by this  invertiblg  transformation 
yields 

Bl(k + 1) = B i k )  + py(k)[q,(k - Z)T1- TX(k - I ) ]  
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The  transformed weight vector Bl(k)  can be partitioned in  a 
manner analogous to  (31) as follows 

(34) 

With this  partitioning,  and  (32),  the  transformed algorithm 
(33)  is recognized as two algorithms: one in the scalar bz'(k) 
and one in the M - 1 dimensional  vector Bl'(k), 

b i (k  + 1) = hI'(k) + w ( k ) [ q x ( k  - 2 )  -Y& - 111 (35a) 

Bl'(k + 1) = Ez'(k) + p ~ ( k ) X ' ( k  - I ) .  (35b) 

These equations may be viewed a s a n  alternative  imple- 
I mentation of Frost's procedure. Since T is invertible, the  out- 

put y ( k )  may be  expressed  as 

K 

~ ( k )  = x [ T Bl(k)] T X ( k  - I ) .  
I=-K 

c Thus if (35)  is used to update  the Bl(k) and  the  output is 
computed using (36),  this  procedure is indistinguishable from 
the original. Many more  computations would be required, 
however, and  the transformed  system offers  no advantages, 

We now  consider the simplification which arises when T is 
an  orthogonal  transformation, i.e., when T-' =TT. The  out- 
put  equation  (36) simplifies to 

Inspection of (35)-(37) shows that  the  transformed linearly 
constrained beamformer  in  this case is identical to  the  adap- 
tive-sidelobe canceling beamformer, provided that  the bl'(k) 
satisfy 

for all values of k .  Since the b ~ ( k )  must satisfy (35a),  this 
will occur  only if they  are initialized to  the values in  (38) and 
if 

4x(k  - 2) = Y,(k - I). (39) 

This condition  is equivalent to  the  requirement  that 

1 

IM 
w, = - 1  

or, equivalently, that all beamformer weights have equal 
values of l/M. 

In summary the above discussion has shown that  the adap- 
tive-sidelobe canceler will be identical t o  Frost's  algorithm 

T is an  orthogonal  transformation.  (From  (31) and (4),  this 
latter  condition  is equivalent to requiring that  the  rows of W ,  
sum up  to  zero and be mutually  orthogonal.) It  is  to be noted 

- provided that  the conventional weights satisfy (40) and that 

that  this is a  sufficient condition  only,  and necessity has  not 
been  considered. 

Jim [ 131 has  studied the comparison in detail and shown 
that steady-state performance of the  twoprocessors  is identi- 
cal regardless of the  structure  of W, and W,, provided that  the 
system operates  at full rank. He has also shown  that  different 
eigenvalue spectra will be  encounteredby  the adaptive filters 
in the  two systems unless W, and W, meet the sufficient 
equality conditions previously described. As a  result the coeffi- 
cient trajectories and  adaptive  learning curves will differ. 

PROPERTIES AND EXTENSIONS OF ADAPTIVE 
CONSTRAINED BEAMFORMERS 

The previous section has presented  a generalized sidelobe 
canceling structure which can be used to implement  the error- 
correcting  linearly  constrained  adaptive  algorithm  in  (10)-(12). 
This structure can also be used to  both analyze the perform- 
ance of the algorithm and to suggest generalizations of con- 
strained  beamforming. We begin by  summarizing the  perform- 
ance  characteristics of the algorithm which are readily  delin- 
eated by the sidelobe canceling model. These properties  are 
then used to extend  the concept of linearly constrained  adap- 
tive beamforming  and to develop new methods  for use in array 
processing. 

One key elem_ent in  the sidelobe canceler is the signal- 
blocking matrix W,. As shown  by (27),  this  matrix is required 
to have llf - '1 linearly independent  rows which sum up  to 
zero. Of the many matrices which can be generated  with this 
property,  two possibilities which involve only addition opera- 
tions are  shown below for  the case M = 4: 

1 -1 -1 
- W,(l)= [I I; -; :] 
- V 2 ) =  [; ; -; ;]. -1 0 0 

In  the first matrix  the rows are mutually orthogonal  and  are 
elements of the binary-valued Walsh functions [ 141.  The 
second matrix involves fewer operations  and consists of  taking 
the difference  between adjacent sensg  outputs. 

One can interpret  the  rows of W ,  as fixed-weight beam- 
formers which are  applied to  the sensor outputs.  The beam- 
formed signals are  then  the  elements of X'(k)  and the con- 
straints in (27) ensure the presence of a  spatial nuJ in  the 
broadside direction  for each beamformer. Note  that W,(l) has 

W,(*) has identical  patterns. 
The  effects of imperfect sensor steering and/or gain varia- 

tions  are easily modeled using the generalized sidelobe cancel- 
ing structure.  For example, gain differences at  the  outputs 
of the time-delayed sensors result  in  a  set of received signals 
xm(t> given by , 

- a  different  spatial amplitude response for each  row while 

~ r n ( t ) = ~ ( f ) ( l  + ern) + nm( t )  (43) 

where e, represents the gain departure  from  unity  at  the  mth 
sensor output. Because of the  nonzero em, the desired signal 

(37) 
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appears in  both  the conventional beamformer  output y c ( r )  and 
in the sidelobe canceling path.  The presence of desired signal 
in  the adaptive  filters has been termed “signal leak through” 
by Widrow e t  al. [ 9 ] ,  and may result in signal distortion  and/ 
or  reduction in output SNR. The  distortion  is  due to  the  fact 
that  the scalar y A ( k )  contains  a weighted sum of delayed- 
desired signal terms. It can be demonstrated, however, that 
these effects are negligible provided that  the power level of 
the signal leak  through is small compared  with the power 
contained  in the filtered  noise  vector N’(k). Equivalently, if 

us2 tr { w , ~ R , , w , ~ ~ )  Q tr w ~ N N w , ~  (44) 

where u: is the power level of the desired signal observed at 
a  sensor output,  tr { - }  denotes  trace, and R , ,  and R N N  are 
the  autocorrelation matrices for  the  vector of gain errors e 
and the received noise vector N ( k ) ,  respectively. For  the case 
of uncorrelated, equal  variance, gain errors,  and white receiver 
noise, the I . - d t  simplifies to 

(45) 

where (2,’ and 0,’ are  the variance of the gain errors and 
white receiver noises. This  result demonstrates a well-known 
property of constrained  beamformers, i.e., that  the system is 
much more sensitive to gain errors at high input signal-to-noise 
ratios. 

New methods of adaptive  beamforming are suggested by 
the generalized sidelobe canceling structure illustrated in Fig. 
4. These  include the following. 

11Additional spatial constraints can be incorporated  into 
the MJ, matrix. For example, one can require both a  spatial 
null  in the desired direction (as in  the system discussed above) 
and  a  zero derivative in that  direction.  The  matrix W , ( 3 )  for 
M = 4 achieves this result: 

Note  that  the  row dimension in  this case is M - 2 due  to  the 
additional spatial constraint.  The system sensitivity to point- 
ing errors  (time-delay  steering  errors),  however, is markedly 
reduced. 

2)  Combined spatial/temporal  constraint  beamfolmers  are 
achieved by including delay-storage elements in the W, matrix. 
Equivalently, 

N 

X’(k) = W,,,X(k - n).  
_.  

n= -N 
(47) 

Thus  far,  to  the authors’  knowledge, studies  into  the advan- 
tages of combined constraints have not been reported. 

3) Power  minimization  algorithms other  than LMS may be 
used to  adapt  the filter  coefficients. Since the constraints have 
been removed from  the algorithm, unconstrained accelerated 
convergence techniques such as the conjugate  gradient method 
[ 151 may offer significant advantages in  tracking time varia- 
tions. 
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Fig. 5. Synthetic  sensor outputs used to demonstrate  algorithm  per- 
formance. > 

SIMULATION RESULTS 
In  order  to  demonstrate  the  performance of the generalized 

sidelobe canceling beamformer described above,  a synthetic 
set of eight sensor output samples was generated. The results 
are shown in Fig. 5. They consist of two statistically  inde- 
pendent narrow-band spatially propagating, random noise 
sources,  each assumed to be an  incident  on  the array from a 
different direction.  The array has been time-delay steered such 
that  the desired signal pulse appears  in  phase at  about 570 
samples in all eight traces.  At  a  normalized one sample  per 
second sampling rate,  the narrow-band random noise  sources 
had  a bandwidth of 0.03 Hz centered  at 0.095 Hz. In  addition, 
a small amount of independent white noise was added to each 
output t o  simulate the  effects of receiver noise. 

Fig. 6 shows the conventional  beamformer output  obtained 
by adding the eight outputs and dividing by eight. The narrow- 
band interference completely dominates  the  output  and  the 
desired signal is  undetectable. Considerably better signal to 
noise ratio can be achieved with  a  linearly  constrained adaptive 
beamformer, as shown  by the results in Fig. 7. The  upper 
waveform is the conventional  beamformer output  depicted 
in Fig. 6 and the  lower  two were generated  with the use of the 
generalized sidelobe canceler and the gradient projection algo- 
rithm  without  error  correction, respectively. All three traces 
are plotted using the same amplitude scaling factor  and  both 
adaptive  beamformers employed a five-point time  operator 
on each  channel. The simple differencing technique described 
in (42) was used to generate the  sevendifference channels. 
An identical  normalized  adaptive  step size CY = 0.2 was used in 
the two-adaptive  beamformers. 

While the  two adaptive outputs  appear  quite similar, small 
differences  are readily apparent. As described in  the previous 
section, these  differences are directly attributable to  the  fact 
that  the generalized sidelobe canceler used a W ,  matrix in 
which the  rows were not mutually orthogond (see (42)). 
Thus,  although the steady-state  performance is the same, 
different  adaptive paths are  employed by the  two algorithms. 
In addition, gradient  projection  incurs  accumulated roundoff 
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Fig. 6.  Conventional  beamformer  output. 
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Fig. 7.  Conventional  and  adaptive  beamformer  outputs. 

error. Most noticeable of this  error is the difference  in  peak 
signal amplitude. The ideal noise-free signal had  an  amplitude 
of 0.940. That measured for  the  two  adapters was 0.938 for 
the generalized sidelobe canceler and 0.786 for the gradient 
projection algorithm. The small error in generalized sidelobe 
canceling is presumably due  to  the presence of the white noise 
component  in  the  output. 

Careful measurements of the average noise power  in  the 
30-50 s window and of the signal amplitude  reduction  in 
gradient  projection were conducted  for values of (Y between 
0.1 and 0.5. Fig. 8 summarizes  these findings for  the  two algo- 
rithms. As described above, the generalized sidelobe canceler 
exhibits negligible signal amplitude degradation over the range 
of  studied. 

DISCUSSION AND CONCLUSION 

The  simulation results  presented above illustrate the effects 
of accumulated  error which a n  be observed with the use of 
the simple gradient projection algorithm.  These effects are 
readily discernible even though  the  simulation  experiments 
were conducted on a CDC 6400 general purpose  computer 
having a  60-bit word length. The  purpose of the simulation 
experimentbwas to demonstrate  that  the generalized sidelobe 
canceler does not  incur similar roundoff penalties. No attempt 
has been made to  study  the well-known noise reduction  prop- 
erties of adaptive  beamforming. Experiments  conducted with 
minicomputers having smaller work length-for example, 
16 bits-would lead to similar insensitivity to error. 
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Fig. 8. Signal and noise power performance.  (a)  Gradient  projection 

algorithm. @) Generalized  sidelobe  canceling  algorithm. 

The generalized sidelobe canceling structure described in 
this paper can be viewed as an alternative implementation of.  
Frost’s  linearly  constrained  adaptive  beamforming  algorithm. 
The  structure has additional advantages, however,  relating to 
both  the. development of other related  beamformers and to 
the performance analysis of constrained  adaptive  beamfor- 
mers. 
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