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Multiple Emitter Location and Signal Parameter
Estimation

RALPH O. SCHMIDT, MEMBER, IEEE

Abstract—Processing the signals received on an array of sensors for the
location of the emitter is of great enough interest to have been treated
under many special case assumptions. The general problem considers
sensors with arbitrary locations and arbitrary directional characteristics
(gain/phase/polarization) in a noise/interference environment of arbi-
trary covariance matrix. This report is concerned first with the multiple
emitter aspect of this problem and second with the generality of solution.
A description is given of the multiple signal classification (MUSIC)
algorithm, which provides asymptotically unbiased estimates of 1)
number of incident wavefronts present; 2) directions of arrival (DOA) (or
emitter locations); 3) strengths and cross correlations among the incident
waveforms; 4) noise/interference strength. Examples and comparisons
with methods based on maximum likelihood (ML) and maximum entropy
(ME), as well as conventional beamforming are included. An example of
its use as a multiple frequency estimator operating on time series is
included.

INTRODUCTION

HE TERM MULTIPLE signal classification (MUSIC) is

used to describe experimental and theoretical techniques
involved in determining the parameters of multiple wavefronts
arriving at an antenna array from measurements made on the
signals received at the array elements.

The general problem considers antennas with arbitrary
locations and arbitrary directional characteristics (gain/phase/
polarization) in a noise/interference environment of arbitrary
covariance matrix. The multiple signal classification approach
is described; it can be implemented as an algorithm to provide
asymptotically unbiased estimates of

1) number of signals;

2) directions of arrival (DOA);

3) strengths and cross correlations among the directional
waveforms;

4) polarizations;

5) strength of noise/interference.

These techniques are very general and of wide application.
Special cases of MUSIC are

1) conventional interferometry;
2) monopulse direction finding (DF), i.e., using multiple
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colocated antennas;
3) multiple frequency estimation.

Tue Data MobpEL

The waveforms received at the M array elements are linear
combinations of the D incident wavefronts and noise. Thus,
the multiple signal classification approach begins with the
following model for characterizing the received M vector X as
in

Xl F[ Wl
K| o | a@) a@) et | | 2]+ | 7
X-M FD Ii/ﬁl
or
X=AF+W. )

The incident signals are represented in amplitude and phase
at some arbitrary reference point (for instance the origin of the
coordinate system) by the complex quantities Fi, F3, ***, Fp.
The noise, whether *‘sensed”” along with the signals or
generated internal to the instrumentation, appears as the
complex vector W.

The elements of X and A are also complex in general. The
a;; are known functions of the signal arrival angles and the
array element locations. That is, a;; depends on the ith array
element, its position relative to the origin of the coordinate
system, and its response to a signal incident from the direction
of the jth signal. The jth column of A is a ‘‘mode’’ vector
a(8)) of responses to the direction of arrival 8; of the jth signal.
Knowing the mode vector a(f;) is tantamount to knowing 6,
(unless a(f;) = a(f,) with 8, + 6,, an unresolvable situation, a
type I ambiguity).

In geometrical language, the measured X vector can be
visualized as a vector in M dimensional space. The directional
mode vectors a(f;) = a; for i = 1, 2, ---, M, i.e., the
columns of A, can also be so visualized. Equation (1) states
that X is a particular linear combination of the mode vectors;
the elements of F are the coefficients of the combination. Note
that the X vector is confined to the range space of A. That is, if
A has two columns, the range space is no more than a two-
dimensional subspace within the M space and X necessarily
lies in the subspace. Also note that a(@), the continuum of all
possible mode vectors, lies within the M space but is quite
nonlinear. For help in visualizing this, see Fig. 1. For
example, in an azimuth-only direction finding system, &
will consist of a single parameter. In an azimuth/elevation/
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Fig. 1. Geometric portrayal for three-antenna case.

range system, 6 will be replaced by 8, ¢, r for example. In any
case, a(f) is a vector continuum such as a ‘‘snake’” (azimuth
only) or a ‘“‘sheet’” (Az/El) twisting and winding through the
M space. (In practice, the procedure by which the a(f)
continuum is measured or otherwise established corresponds
to calibrating the array.)

In these geometrical terms (see Fig. 1), the problem of
solving for the directions of arrival of multiple incident
wavefronts consists of locating the intersections of the a(f)
continuum with the range space of A. The range space of A is,
of course, obtained from the measured data. The means of
obtaining the range space and, necessarily. its dimensionality
(the number D of incident signals) follows.

THE § MATRIX

The M X M covariance matrix of the X vector is
S & XX*=AFF*A*+ WW*
or
S=APA*+ S, )

under the basic assumption that the incident signals and the
noise are uncorrelated. Note that the incident waveforms
represented by the elements of F may be uncorrelated (the
Dx D matrix P & FF* is diagonal) or may contain completely
correlated pairs (P is singular). In general, P will be
““merely’” positive definite which reflects the arbitrary degrees
of pair-wise correlations occurring between the incident
waveforms.

When the number of incident wavefronts D is less than the
number of array elements M, then APA* is singular; it has a
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rank less than M. Therefore
|APA*|=|S—\S| =0. 3)

This equation is only satisfied with A equal to one of the
eigenvalues of S in the metric of Sy. But, for A full rank and P
positive definite, APA* must be nonnegative definite. There-
fore \ can only be the minimum eigenvalue A.;,. Therefore,
any measured § = X X* matrix can be written

S=APA*+ ApinSo, Amin=0 4)
where A, is the smallest solution to {S — ASy| = 0. Note the
special case wherein the elements of the noise vector W are
mean zero, variance o2, in which case, ApinSo = ¢2l.

CALCULATING A SOLUTION

The rank of APA* is D and can be determined directly
from the eigenvalues of S in the metric of Sy. That is, in the
complete set of eigenvalues of S in the metric of Sg, Ay, will
not always be simple. In fact, it occurs repeated N = M — D
times. This is true because the eigenvalues of S and those of
S — AminSo = APA* differ by Ay, in all cases. Since the
minimum eigenvalue of APA* is zero (being singular), Api,
must occur repeated N times. Therefore, the number of
incident signals estimator is

D=M-N (5)

where N = the multiplicity of Apn(S, So) and Apin(S, So) is
read ‘A, of S in the metric of Sy.*” (In practice, one can
expect that the multiple A;, will occur in a cluster rather than
all precisely equal. The “‘spread’’ on this cluster decreases as
more data is processed.)

THE SIGNAL AND NoOISE SUBSPACES

The M eigenvectors of S in the metric of S, must satisfy
Se; = NSoei, i = 1,2, ¢+, M. Since S = APA* + A\puinSo,
we have APA*e; = (\; — Ayn)Seei. Clearly, for each of
the A; that is equal to A ;—there are N—we must have
APA*e; = 0 or A*e; = 0. That is, the eigenvectors
associated with A (S, Sp) are orthogonal to the space spanned
by the columns of A4; the incident signal mode vectors!

Thus we may justifiably refer to the /V dimensional subspace
spanned by the N noise eigenvectors as the noise subspace and
the D dimensional subspace spanned by the incident signal
mode vectors as the signal subspace; they are disjoint.

THE ALGORITHM

We now have the means to solve for the incident signal
mode vectors. If Ex is defined to be the M X N matrix whose
columns are the N noise eigenvectors, and the ordinary
Euclidean distance (squared) from a vector Y to the signal
subspace is d? = Y*EyE}Y, we can plot 1/d? for points
along the a(f) continuum as a function of 8. That is,

1

Pru(0)= @) ExEfa(®)

©

(However, the () continuum may intersect the D dimen-



278

sional signal subspace more than D times; anouther unresolva-
ble situation occurring only for the case of multiple incident
signals—a type Il ambiguity.) It is clear from the expression
that MUSIC is asymptotically unbiased even for multiple
incident wavefronts because S is asymptotically perfectly
measured so that Ey is also. a(#) does not depend on the data.
Once the directions of arrival of the D incident signals have
been found, the A matrix becomes available and may be used
to compute the parameters of the incident signals. The solution
for the P matrix is direct! and can be expressed in terms of
(S — AuinSo) and A. That is, since APA* = § — ApinSos

P=(A*A)'A*(S— AanSe) A (A*A)~ . (7

IncLUDING POLARIZATION

Consider a signal arriving from a specific direction 6.
Assume that the array is not diverse in polarization; i.e., all
elements are identically polarized, say, vertically. Certainly
the DF system will be most sensitive to vertically polarized
energy, completely insensitive to horizontal and partially
sensitive to arbitrarily polarized energy. The array is only
sensitive to the vertically polarized component of the arriving
energy.

For a general or polarizationally diverse array, the mode
vector corresponding to the direction ¢, depends on the signal
polarization. A vertically polarized signal will induce one
mode vector and horizontal another, and right-hand circular
(RHC) still another.

Recall that signal polarization can be completely character-
ized by a single complex number g. We can *‘observe’’ how
the mode vector changes as the polarization parameter g for
the emitter changes at the specific direction . It can be
proven that as g changes through all possible polarizations, the
mode vector sweeps out a fwo-dimensiona! ‘‘polarization
subspace.”” Thus, only two independent mode vectors span-
ning the polarization subspace for the direction 8, are needed
to represent any emitter polarization g at direction 6,. The
practical embodiment of this is that only the mode vectors of
two emitter polarizations need be calculated or kept in store
for direction 8 in order to solve for emitter polarizations
where only one was needed to solve for DOA in a system with
an array that was not polarizationally diverse.

These arguments lead to an equation similar to (6) for P(9)
but including the effects of polarization diversity among the
array elements.

1

xm< [ b ]EN E;s[ a0 a,6) ] >
¥

where a,(0) and a,(f) are the two continua corresponding to,
for example, separately taken x and y linear incident wave-

®

P MU (0) =

! {(added in reprint) Equation (7) is true if S,, the noise covariance matrix, is
the identity matrix. In general, although there are many estimators of P, the
least squares estimate based on X = AF + W with WW* = A, S, requires
whitening which leads to

P=(A*S5'4) 'A% S5 (S~ MunSo) S¢ 1A (A*S ;1 A) 1. ©)
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Fig. 2. Block diagram for multiple signal classification.
front polarizations. The eigenvector corresponding t0 Ay, in
(8) provides the polarization parameter g since it is of the form
[1 4.

THE ALGORITHM

In summary, the steps of the algorithm (see Fig. 2) are:

Step O:
Step 1:
Step 2:
Step 3:
Step 4:
Step 3:

collect data, form S;

calculate eigenstructure of S in metric of Sg;
decide number of signals D; (5);

evaluate Py, (8) versus 8; (6) or (8);

pick D peaks of Py (8);

calculate remaining parameters; (7).

The above steps have been implemented in several forms to
verify and evaluate the principles and basic performance.
Field tests have been conducted using actual receivers, arrays,
and multiple transmitters. The results of these tests have
demonstrated the potential of this approach for handling
multiple signals in practical situations. Performance results are
being prepared for presentation in another paper.

CompARISON WrITH OTHER METHODS

In comparing MUSIC with ordinary beamforming (BF),
maximum likelihood (ML), and maximum entropy (ME), the
following expressions were used. See Figs. 3 and 4.

Pre(0) = a*(6) Sa(6)
O s
1

Pl = e a)
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Fig. 4. Example of azimuth-only DF performance (scale expanded about

weaker signal at 30°).

where ¢ is a column of S~!. The beamformer expression
calculates for plotting the power one would measure at the
output of a beamformer (summing the array element signals
after inserting delays appropriate to steer or look in a specific
direction) as a function of the direction.

Py () calculates the log likelihood function under the
assumptions that X is a mean zero, multivariate Gaussian and
that there is only a single incident wavefront present. For
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multiple incident wavefronts, Py (8) becomes

1
P“L(e)‘xm(Afs-lAa)
which implies a D dimensional search (and plot!).

Py(0) is based on selecting one of the M array elements as
a ““reference’’ and attempting to find weights to be applied to
the remaining M — 1 received signals to permit their sum with
a MMSE fit to the reference. Since there are M possible
references, there are M generally different Pyg(f) obtained
from the M possible column selections from S~!. In the
comparison plots, a particular reference was consistently
selected.

An example of the completely general MUSIC algorithm
applied to a problem of steering a multiple feed parabolic dish
antenna is shown in Fig. 5. sin x/x pencil beamshapes skewed
slightly off boresight are assumed for the element patterns.
Since the six antennas are essentially colocated, the DF
capacity arises out of the antenna beam pattern diversity. The
computer was used to simulate the ‘‘noisy’’ S matrix that
would arise in practice for the conditions desired and then to
subject it to the MUSIC algorithm. Fig. 5 shows how three
directional signals are distinguished and their polarizations
estimated even though two of the arriving signals are highly
similar (90 percent correlated).

The application of MUSIC to the estimation of the frequen-
cies of multiple sinusoids (arbitrary amplitudes and phases) for
a very limited duration data sample is shown in Fig. 6. The
figure suggests that, even though there was no actual noise
included, the rounding of the data samples to six decimal digits
has already destroyed a significant portion of the information
present in the data needed to resolve the several frequencies.

SUMMARY AND CONCLUSION

As this paper was being prepared, the works of Gething [1]
and Davies [2] were discovered, offering a part of the solution
discussed here but in terms of simultaneous equations and
special linear relationships without recourse to eigenstructure.
However, the geometric significance of a vector space setting
and the interpretation of the S matrix eigenstructure was
missed. More recent work by Reddi [3] is also along the lines
of the work presented here though limited to uniform,
collinear arrays of omnidirectional elements and also without
clear utilization of the entire noise subspace. Ziegenbein [4]
applied the same basic concept to time series spectral analysis
referring to it as a Karhunen-Loeve transform though treating
aspects of it as ‘‘ad hoc.”” El-Behery and MacPhie [5] and
Capon [6] treat the uniform collinear array of omnidirectional
elements using the maximum likelihood method. Pisarenko [7]
also treats time series and addresses only the case of a full
complement of sinusoids; i.e., a one-dimensional noise
subspace.

The approach presented here for multiple signal classifica-
tion is very general and of wide application. The method is
interpretable in terms of the geometry of complex M spaces
wherein the eigenstructure of the measured S matrix plays the
central role. MUSIC provides asymptotically unbiased esti-
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mates of a general set of signal parameters approaching the
Cramer-Rao accuracy bound. MUSIC models the data as the
sum of point source emissions and noise rather than the
convolution of an all pole transfer function driven by a white
noise (i.e., autoregressive modeling, maximum entropy) or
maximizing a probability under the assumption that the X
vector is zero mean, Gaussian (maximum likelihood for
Gaussian data). In geometric terms MUSIC minimizes the
distance from the a(f) continuum to the signal subspace
whereas maximum likelihood minimizes a weighted combina-
tion all component distances.

No assumptions have been made about array geometry. The
array elements may be arranged in a regular or irregular
pattern and may differ or be identical in directional character-
istics (amplitude/phase) provided their polarization character-
istics are all identical. The extension to include general
polarizationally diverse antenna arrays will be more com-
pletely described in a separate paper.
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