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Audio signal processing algorithms generally involves analysis of signal, extracting its properties, predict-
ing its behaviour, recognizing if any pattern is present in the signal, and how a particular signal is corre-
lated to another similar signals. Audio signal includes music, speech and environmental sounds. Over the
last few decades, audio signal processing has grown significantly in terms of signal analysis and classifi-
cation. And it has been proven that solutions of many existing issues can be solved by integrating the
modern machine learning (ML) algorithms with the audio signal processing techniques. The performance

ifﬁ?g,rdi of any ML algorithm depends on the features on which the training and testing is done. Hence feature
Speech extraction is one of the most vital part of a machine learning process. The aim of this study is to summa-
Signal rize the literature of the audio signal processing specially focusing on the feature extraction techniques.
Feature extraction In this survey the temporal domain, frequency domain, cepstral domain, wavelet domain and time-
Survey frequency domain features are discussed in detail.

Machine learning

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In order to make machines and computer intelligent like
humans, we are using machine learning and artificial intelligence
methods. Ideally, in today’s world we want computers to have
capability to make decisions like humans. One of the important
sense of humans is hearing. Fig. 1 helps us to understand how
human auditory system behaves over the listening range of
20 Hz-20 kHZ. It is a graph between sound pressure level (SPL)
in decibel and the audible frequency range [1,2]. The graph shows
the absolute threshold of hearing for different frequencies. Abso-
lute threshold of hearing is the minimum sound pressure level of
a pure tone that can be heard by a normal ear in silence. It is nice
to note that the human auditory system’s sensitivity is best
between frequency range 2 kHZ-5KkHZ where the threshold
reaches as low as —9 db SPL [3]. Approximately, for music our ears
are sensitive between range 50 Hz and 15 kHZ while for speech the
ears are sensitive between 100 Hz and 4.5 kHZ.

Humans can easily classify between various sounds without
putting an extra effort e.g. we can easily classify between speech
and music, car and truck sounds, baby and adult speech quality,
various speakers, noise and useful sound etc. We want machines
would be able to classify between various sounds as humans can
do effortlessly. This problem is also called as machine hearing [4].
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This leads to the research area of acoustic scene classification
(ASC) [15] where a machine is trained to classify between various
sounds that are present in an acoustic scene. Fig. 2 represents the
ASC model was first proposed by Gerhard in [5].

Regardless of any particular aim, a ML system requires robust
and discriminatory features that helps a machine to learn accu-
rately and quickly. The intelligence of a machine is defined by
the amount of training given to it. Normally the whole dataset is
not fed into the computer or machine during its training to learn
its properties, rather a reduced in size representation of the signals
is used to train the machine. This compact representation of a sig-
nal is called as feature. The challenge is to extract right features
ensures the success of a ML algorithm. The features must be com-
pact in size but must highlight the characteristics of signal. The
Features are so selected that it reduces the size of a signal signifi-
cantly while still describing a signal completely and accurately.
The reduced version of the signal improves the computational
complexity and time complexity of the ML algorithms which in
turn make it more suitable for real time applications. So, we can
say that feature extraction is a process of dimension reduction of
a signal which makes the signal more suitable for ML algorithms.

In this paper, we focus only on the features extracted from
speech signals and on the musical sound. The application area of
speech signals is very vast, to name a few like speech recognition
[6], speaker recognition [8], blind source separation [7,8], speech
enhancement [9], pathological speech detection [10,11], improving
pathological speech [11,12], noise reduction, noise cancellation,
gender classification, human-computer interaction [13] like
Apple’s Siri or Amazon’s alexa etc. While on the other hand, music
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Fig. 1. Absolute threshold of hearing [1].

signals are analyzed in applications like mood detection [14], emo-
tion prediction, genre classification [15], song tagging, singer clas-
sification etc.

The rest of the paper is organized as: Section 2explains the basic
structure of a typical ML system and explains in brief about the
audio types: speech, music and environmental sounds, Section 3dis-
cuss about the evolution of audio signal features and types of audio
features. Section 4explains the time domain features, frequency
domain features, time-frequency features, wavelet features, cep-
stral features, phase and eigen features and the last section discuss
about the critical analysis, conclusion and future work.

2. Structure of machine learning system

The basic structure of any typical audio ML system is defined in
Fig. 3. In the first stage, the pre-processing is done on the audio sig-
nal. The pre-processing may involve noise cancellation, silence
reduction, normalization etc. The next stage is windowing of the
signal that helps us to analyze the possible non-stationary signal
as quasi-stationary signal. The whole signal can be studied and
analyzed by sliding the window over the whole length of the
signal. Using modern windowing methods, the size of the window

can be made adaptive according to the characteristics of the signal.
After that, the feature extraction and feature selection steps are
taken. These steps decide the performance of the classifier. Then
the selected features are fed into the classifier for training and test-
ing and based on the classifier’s prediction the decision is made.

2.1. Audio types

As discussed in Fig. 2, the audible audio signals are categorized
into speech, music and environmental sounds. These are explained
in brief below:

Speech: Speech is produced by human beings by using combina-
tion of various organs like lungs, mouth, nose, abdomen and the
brain. The vocal tract and vocal cords play a major role in speech
production. The speech production starts at frequency of 100 Hz
and may go up to the frequency of 17 kHZ [17].

Music: Musical sounds are produced by musical instruments or
humans in order to produce harmony and expression of emotions.
Music can be described in various dimensions like genre, mood and
sound characteristics. Traditionally, music has been classified into
categories like rock, jazz, classical or pop. Ideally frequency range
of music varies from as low as 40 Hz and may go as high as up
to 19.5 kHZ [17].

Environmental sounds: In everyday life, we are surrounded by
endless number of environmental sounds like sound of car or any
other vehicle, running water, door bell, phone ring, factory noise,
animal sounds etc. These sounds spread over the whole audible
range. Fig. 4 shows the time domain structure of these 3 types of
sounds. Fig. 4 shows the audio signal for human speech, guitar note
and a car honk sound. The periodicity in the signal can be observed
in speech and music sounds, but it is hard to find any periodicity in
environmental sounds.

It is clear from Fig. 4 that speech is continuous in nature and has
a smooth envelope, while guitar notes are of short duration and
non-continuous in nature. The fire truck sound looks like noise
and have very high amplitude. These three sounds not only differ
in time domain, but also differ in frequency domain. Fig. 5 shows
the frequency spectra of these 3 sounds. It can be noted from the
Fig. 4 that the magnitude of the frequency spectrum of speech

Audible
sound
classification

Environmental
sounds: traffic,
noise etc.

Fig. 2. Sound Classification.
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signal is very less in comparison to the music and environmental
sound. This could be used speech/music classification.

3. Audio feature extraction methods: evolution and types

Evolution of audio features: In simple terms, feature extraction is
a process of highlighting the most dominating and discriminating
characteristics of a signal. A suitable feature mimics the properties
of a signal in a much compact way. The evolution of audio signal
features is explained in Fig. 6. The evolution of audio features
can be sub-categorized into time domain, frequency domain, joint
time-frequency domain, and deep features. The oldest and simplest
features are extracted from the time domain. The time domain fea-
tures evolved up to late 1950s [18,19,21]. Till date the time domain
features plays an important role in audio analysis and classifica-
tion. To analyze the spectrum of an audio signals, several features
like pitch, formants etc. were evolved from frequency domain and
employed in various application till date. The evolution of
frequency domain features was around 1950s to 1960s [20,22].
In later 1960s, the joint time-frequency [23-25]feature extraction
algorithms were developed. Since then these features are used in
audio signal processing algorithms. Since the evolution of deep
learning, the deep features are extensively used in various applica-
tions, in audio signal processing deep features have been used
since 2010 in the area of acoustic scene classification [127,128],
speaker recognition [130]and audio video analysis [129].

4. Audio signal feature extraction
4.1. Time domain features

Before discussing about the time domain features it is impor-
tant to discuss the concept of windowing in time domain. The sim-
plest way to analyze a signal is to analyze it in its original form. All
the sound signals we are discussing here is a time series signal i.e.
these signals evolves with time. By visualizing a signal in time
domain, we may analyze few key characteristics of a signal and this
information can be used in predicting and analyzing similar sig-
nals. This time domain analysis is simple till the signal is of short
time or reflects stationary properties over time. In real time audio
signals are non-stationary over the time. To analyze such non-
stationary signals windowing technique is employed and the long
non-stationary signal is analyzed as short chunks of quasi-
stationary signal.Windowing can be seen as multiplying a signal
with a window function that is zero everywhere except the region
of interest. The resultant windowed signal is the subset of the orig-
inal signal which is passed though the window, for rest of the time
the signal is zero. The simplest type of window is rectangular win-
dow which is defined by Eq. (1):

1, —MlngMd

2 ) 2 (1)
0, otherwise
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Fig. 6. Evolution of Audio Feature Extraction.

The Fig. 7 explains the concept of windowing a signal when
using rectangular window as a function. In order to analyze the
whole signal, the window is slided over the time and moves from
the left most corner of the plot towards the right corner of the plot.
The size of the window is made adaptive and is changed according
to the characteristics of the original source signal in order to con-
vert the long non-stationary signal into small quasi-stationary sig-
nal. Fig. 8 explains the sliding process of an adaptive rectangular
window over a signal.

One problem with the rectangular window is the abrupt change
in its shape at the edges, which may cause distortion when the sig-
nal is being analyzed. The distortion is the result of the Gibbs phe-
nomenon. In order to handle this problem, we may use a window
function with smooth curves like Hamming or Hanning window.

These window functions are zero at the edges and rises gradually
to be one in the middle of the window shape. With such window
functions, the edges of the signal are downgraded and the edge
effect because of Gibbs phenomenon is reduced.

Zero-crossing rate (ZCR): The ZCR of an audio frame is defined as
the rate of change of sign of the signal during the frame. Mathe-
matically, it is the number of times a signal changes its sign from
positive to negative and vice versa, divided by the length of the
frame. In simple words, ZCR is the number of times signal crosses
the zero level in one second interval. The ZCR for ith frame with the
length N is defined by Eq. (2) and explained in Fig. 9 as:

N
Z(i) = %Z\Sgn[xf(")] —sgnxi(n —1)]] (2)
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where sgn(.) is a sign function i.e

1, xi(n) =0

sgnlx,(N)] = {0 B

(&)

ZCR is a very efficient way to detect voice activity that determi-
nes whether a speech frame is voiced, unvoiced or silent. The ZCR
is higher for the unvoiced portions of the speech in comparison to
the voiced portion of the speech. Fig. 10(a) represents the speech
signal and its ZCR. It is clear that ZCR for unvoiced segments are
very high than for the voiced segments. Of course, in ideal condi-

tions the silence portion in a clean speech the ZCR must be equal
to zero.

ZCR is also a technique to estimate fundamental frequency (FF)
[28] of the speech. The ZCR is equal to the twice the frequency of
the signal. Hence, we can say that ZCR gives indirect information
about the frequency of the signal. Hence, this feature can be used
to design discriminator and classifier [27]. Fig. 10(b) shows the
ZCR for music clip and it would be interesting to note that, the
ZCR for music is higher than that for the speech signal [56]. The
MATLAB pseudo code for calculating ZCR is given below:

Algorithm 1: Zero crosing rate

1. Result: Zero Crossing Rate of a Signal
2. Initialization: mono-channel signal x;(n)
3. ZCR= sum(abs(diff (x;(n) > 0)))/length(x;(n))

e Another type of ZCR based feature is called modified ZCR. The
modified ZCR is the Zero-crossing function with detrending
technique. In this method, Eq. (2) is modified and represented
in Eq. (4) as:

L1 ) X
Z(i) = EZI%HM(H)] —sgn[yi(n —1)]| 4
n=1
where
y =X-Yy,4 % is mean value of x (5)

e Linear prediction ZCR: It is the ratio between ZCR of original
signal and the ZCR of prediction error obtained from a linear
prediction filter [33].

Hence, ZCR is used in many applications including music/speech
discrimination [29,30], music genre classification [32], voice activ-
ity detection [31] and vowel detection and analysis [145].

Amplitude based features: These are based on very simple analy-
sis of temporal envelop of the signal. The various type of amplitude
based features are discussed below:

e Amplitude descriptor (AD): This feature helps to differentiate
between different type of sound envelopes by considering the
energy, variation of duration of signal segments from high and
low amplitudes by the means of adaptive threshold. This fea-
ture is mainly used in environmental sound classification [34].

e Attach, Delay, Sustain, Release (ADSR) envelop: This ADSR
feature is used in music analysis and classification between
musical genres.
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The ADSR envelope feature is not achievable for most real time
sounds because the decay part is not clearly present, sustain
part is not present in speech and environmental sounds (only
present in music sounds). To deal with such a problem a mod-
ified envelope based on attack and rest is used, it is called as AR
envelope. In this the decay part is not present and sustain and
release part is merged. The ADSR and AR envelopes are used
in timbre analysis of musical instruments [36]. Fig. 11 shows
the ADSR and AR envelop for a signal. The MATLAB pseudo code
for ADSR envelope is given in algorithm 2.

Algorithm 2: ADSR envelope detection

1. Result: ADSR envelope

2. Input: Musical Key number, duration of key pressing
3. freq = 440 « 2((keynum — 49)/12) >calculate
frequency for given key

4.t =0:1/sampling frequency : duration

5. tone =sin(2 * pi* freqx t) >generate sinusoidal
output tone

6. A = linspace(0,1,0,1 =« (length(tone)) >rise 10
percent of signal

7. D = linspace(1,0.8,0.15 =« (length(tone)) >drop of 15

percent of signal

8. S = linspace(0.8,0.8,0.6 x (length(tone)) >delay of 60
percent of signal

9. R = linspace(0.8,0,0.15 =« (length(tone)) >drop of 15

percent of signal
10. ADSR = [ADSR]
11. Multiply ADSR with tone and plot on MATLAB

o log attack time (LAT): It is the logarithmic (base 10) of the
time duration between the time starts to the time it reaches
its stable part. It has been used for musical onset detection
[61]and environmental sound recognition [39,40].

Algorithm 3: Log attack time

1. Result: Log attack time

2. LAT= IOg]O(tattackend - tattackstart) >t is time

e Shimmer: Shimmer computes cycle-to-cycle variations of
the amplitude in a waveform. It is used in voice activity
detection, speaker recognition, speaker verification [37],
classify musical sounds [38].

Energy based features:

e Short time energy (STE): The sound signals are non-stationary

in nature. As explained above, the non-stationary signal can
be transformed into small portions of quasi-stationary signals
using framing/windowing method. The energy through out
the signal is variable and hence it is not feasible to predict a
value. For this, the short time energy which is the energy from
a frame is calculated. STE [56] is defined as average energy per
frame. The STE is low for unvoiced segments and high for voiced
segments. Fig. 12 shows the STE for speech and music. STE is
used to detect the voiced-unvoiced segments [31], music onset
detection [61], environmental sound detection [42], vowel
detection and analysis [145] and audio based surveillance sys-
tems [41]. The pseudo code for calculating STE is given in algo-
rithm 4.

Algorithm 4: Short time energy calculation

1. Result: Short time energy value

2. Inputs: Audio signal (x), window type, window
amplitude, window length

3. win = select a window function
hamming, hanning, blackmann etc.
4. xnew = x>

5. STE = xnew @ win
square

>rectangular,

>convolution of window and signal

e Volume: Volume or Loudness of a sound is the one of the
most promising feature of a human auditory system. Math-
ematically, volume is defined as the root mean square
(RMS) value of the magnitude of the signal within a frame.
It is used in speech/music discrimination [52], speech seg-
mentation and acoustic scene classification [43]. algorithm
5 explains the pseudo code for calculating volume of an
audio signal.
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- — auto-correlation value of +1 represents strong positive association,
Algorithm 5: Volume or loudness of audio signal —1 represents a negative association and 0 shows no association.
Result: Loudness of audio signal The auto-correlation at lag zero is always 1, this is because the sig-
1. Input: Audio signal (x), sampling frequency (Fs) nal is always perfectly correlated with itself. Fig. 13 shows the val-
2. loudness = integratedLoudness(x,Fs) >in-build ues of auto-correlation of a speech signal with itself with a time lag
function of MATLAB of 20. For example at time lag 1 the auto-correlation value is 0.8

that represents the 80% similarity of the signal to itself when the
signal is lag by 1 unit [35,44].

Auto-correlation function is used to determine the periodicity
present in a signal. It is used to analyze musical beats and their

e Temporal centroid (TC): The temporal centroid is the time
averaged over the energy envelope. The temporal centroid
has been used in environmental sound recognition [42]
and acoustic scene classification [43]. The algorithm for the
TC is given below:

Sample Autocorrelations.

08

°
>

Algorithm 6: Temporal centroid

1. Result: TC

2. find e(x) = energy envelope of the Audio signal (x)

3. Multiply e(x) by the signal itself

4. Find sum of the products of signal and energy envelope of
signal

5. TC = Divide the result by total energy envelope
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tempo. It is also used to estimate the pitch (fundamental fre-
quency) of a signal.

Rhythm Based: Rhythm in general is regular recurrence of pat-
tern over the time. The rhythm is found in musical instruments,
poetry (speech) and environmental sounds (e.g. bird chirping).
Some rhythm based features are speech duration, articulation rate,
phoneme duration, pause ratio, total duration, total pause dura-
tion, total vowel duration, pulse metric, pulse clarity, band period-
icity, beat tracker, beat histogram etc. Pulse metric is a measure
that uses the long-time band pass auto-correlation over a window
of 5 s. This feature is used in speech/music discrimination [33,52],
analysis of pathological speech [45], music genre classification
[46], music instrument classification.

4.2. Frequency domain features

Time domain graph shows the signal variation with respect to
time. To analyze a signal in terms of frequency, the time-domain
signal is converted into frequency domain signal by using Fourier
transform or auto-regression analysis. Frequency domain analysis
is a tool of utmost importance in audio signal processing. The
major frequency domain features are discussed below:

e Auto-regression based: Auto-regression based features are
extracted from linear prediction analysis of a signal. The most
common auto-regression based features are:

- Linear Predictive Coding (LPC) Coefficients: LPC removes the
redundancy from a signal and tries to predict next values by
linearly combining the previous known coefficients. LPC is
the all pole filter that represents the spectral envelope of a
digital speech in compressed form using linear prediction
model. LPC coefficients are use for audio segmentation and
audio retrieval. In MATLAB there is a in-build function “lIpc”
having parameters audio signal x and order of linear predictor.

Algorithm 7: Extraction of LPC coefficients

Result: LPC coefficients

1. Input: Audio signal x.

2. Perform normalization and preemphasis on the signal x.
3. Implement frame blocking.

4. Perform windowing on the frame blocked signal.

5. Do auto-correlation analysis.

6. Analyze using liner prediction by using levinson-durbin
algorithm.

- Code Excited Linear Prediction (CELP): The CELP is based on

three techniques:

1. Use of linear prediction model to mimic vocal tract.

2. Use of adaptive or fixed code-book entries as the excita-
tion signal to the linear prediction model.

3. The search is performed in a closed loop and in a percep-
tually weighted domain. CELP is a speech coding algo-
rithm and provides better quality than low bit rate
algorithms such as linear predictive coding Vocoders
and residual-exited linear prediction algorithms. This
features is the combination of Linear spectral frequency
and features related to pitch and residual signal. The
CELPs are used in environmental sound recognition [50].

- Linear Spectral Frequency: It is also called as linear spectral
pairs and useful in speech coding. LSF are used to represent
linear prediction coefficients for the transmission over the
channel. A linear prediction polynomial is represented as
the average of pallindromic polynomial and antipallindro-

mic polynomial. The pallindromic polynomial represents
the vocal tract when glottis is closed and the anti-
pallindromic polynomial represents the vocal tract when
glottis is open. The roots of the pallindromic and anti-
pallindromic polynomials are conjugate in nature and hence
half of the roots are transmitted. The LSF representation of
the Linear Prediction polynomial consists simply of the loca-
tion of the roots. This feature shows variation in value when
the glottis is closed and open. Hence, this feature is used in
voiced/unvoiced segment detection, speaker segmentation
[51] and speech/music discrimination [52].

e Peak Frequency: Peak frequency is simply the frequency of
maximum power. It gives an estimate about the most dominant
frequency present in the signal and also helps to calculate fun-
damental frequency of the signal. Peak frequency is a useful
parameter when we are classifying music and speech, gender
classification etc. Fig. 14 shows the peak frequency from a single
sided FFT spectrum.

Algorithm 8: Peak Frequency

1. Input: Audio signal (x)

2. Covert the signal into frequency domain by using FFT.
3. Calculate the absolute value of the transformed signal.
4. Find the maximum value from the result of step 3.

e Method of Selection of Amplitudes of Frequency Multi-
expanded Filter based features: The Method of Selection
of Amplitudes of Frequency Multi-expanded (MSAF MULTI-
EXPANDED) filter based features are the hand-crafted fea-
tures specially used to detect faults in electric motors used
for drilling or grinding [147] or in detecting faulty commuta-
tor motor [151]. This is an acoustic feature that extracts the
differences between FFT spectra. The generalized algorithm
to extract MSAF-MULTIEXPANDED acoustic features is given
below:

Algorithm 9: MSAF-MULTIEXPANDED acoustic features

1. Input: Acoustic signal captured from electric motors.

2. Compute FFT spectra of good and faulty acoustic signals.
3. Calculate difference between good and faulty spectra.

4. Compute the absolute value of the difference calculated.
5. Find common frequency components from the absolute

difference values.

6. Form groups of frequency components.

7. Form bandwidth of the frequencies to construct classes

for classification.

8. Form a feature vector from those bandwidths.

semilog spectrum of speech signal

-
o,
&

log magnitude

-
o,
L

frequency bins 4

Fig. 14. Peak Frequency of a Signal from single sided spectrum.
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o Shortened method of frequencies selection MULTIEX-
PANDED: Very similar to MSAF-MULTIEXPANDED feature,
Shortened method of frequencies selection MULTIEXPANDED
(SMOFS-MULTIEXPANDED) is another hand crafted feature
that is too employed in industry applications specifically to
diagnose fault in motors [149]. The algorithm below explains
how SMOFS-MULTIEXPANDED features are extracted and
how these are different from MSAF-MULTIEXPANDED
features.

Algorithm 10: SMOFS-MULTICRAFTED acoustic feature

1. Input: Vibrations captured from motors.

2. Extract FFTs from various healthy and faulty motor’s
vibration sounds.

3. Calculate absolute difference of the various FFTs.

4, Select the frequency components greater than a
threshold.

5. Compute the variable threshold of selection of frequency
components using iterative methods.

6. Set the parameter: Threshold of common frequency
components MULTIEXPANDED extension.

7. Find common frequency components.

8. Form a final feature vector from common frequency
components.

o STFT based features/Time-Frequency Features: A time-
frequency transform of a signal is the way of looking into
the signal having time on one axis and frequency on another.
The time-frequency analysis could be obtained by using
time-frequency distribution (TFD). Generally the time-
frequency domain is called as time-frequency representation
(TFR) obtained by TFD. The time-domain shows the varia-
tions in signal amplitude over the period of time, while in
frequency domain the magnitude of the frequency content
gives only frequency information but no time information.
A TFR bridges this gap and provide the time and frequency
resolution. STFT is the most common way to have a TFR.
Also, a TFR features are effective for analysis non-
stationary aspects of a signal such as trends, discontinuities
and patterns which is normally missed by the time or fre-
quency domain features [135].

- Time-Frequency Matrix: By using the STFT, the time-domain

signal could be converted into TFR. However, this representa-

tion contains a huge amount of data and information. For
example of the Guitar signal, sampled at 44.1 kHZ the TFD
with a resolution of 128 x 1024 gives 131,072 TF samples.

To reduce the dimension of the TF matrix the various decom-

position techniques could be employed to get the relevant

and compact TFR. Some well known TFD techniques are:

1. linear TFDs: These are the simplest form of TFDs and is
equal to the squared modulus of the STFT signal [139].
The original size of this TFD is quite huge.

2. Quadratic TFDs: To make the TFD adaptive, the window
size is made adaptive with respect to the signal. The
wigner ville distribution (WVD) is the simplest quadratic
TFD. It is a great method to analyze signals in time-
frequency domain. This distribution doesn’t suffers from
leakage effects as STFT does. Hence it gives the best spec-
tral resolution. This feature has been used in analysis of
audio signals [119] and detecting industrial gear failures
[120]. It is also used in seismic data processing [121]. The
major drawback of the WVD is the generation of cross
terms due to its quadratic nature. This drawback is elim-
inated by Cohens class of bilinear TF representation.

3. Positive TFDs: The positive TFDs gives positive terms and
are free from cross terms. The positive TFDs [138] are
based on the signal dependent kernels.

4. Matching pursuit TFDs: Matching pursuits TFD is based
on the matching pursuit decomposition that uses non-
orthogonal basis functions to decompose a signal into
gabor atoms with a variety of possible translations, mod-
ulations and scaling. These are highly used in environ-
mental sound classification [135,139].

This Time-frequency matrix could directly be used in various ap-
plications like classification of environmental sounds [135,137].
The TFD is used in industry too. For instance the vibrations gen-
erated by the motors is analyzed using TFD to find the faulty motor
bearing present in the motor [148,150].
- Sub-band energy ratio: The sub-band coding breaks the sig-
nal into different frequency bands typically by using FFT or
STFT and encodes each one independently. The sub-band
energy ratio is defined as the measure of normalized signal
energy along these different frequency bands. It has been
used for audio segmentation, environmental audio recogni-
tion [42] and music analysis [43].
- Spectrum envelope: The spectrum envelope is a log-
frequency power spectrum of a signal and can be used to
generate reduced spectrogram of the audio signal. The spec-
tral envelope when generated by linear prediction method, it
is called as linear prediction spectral envelope. Due to error
optimized by linear prediction, the spectral peaks of an
audio signal are more accurate and emphasis on the envel-
ope as they are in auditory system. This feature has been
used in music genre classification [29,32]and environmental
sound recognition [42].
- Stereo panning spectrum feature (SPSF): In audio signal pro-
cessing, the stereo audio is converted into to mono channel
audio before proceeding for the processing [68]. Hence, the
information content present due to stereo panning is not
fully utilized. In order to answer this, stereo panning spec-
trum is considered. The frequency-domain source identifica-
tion system based on cross-channel metric is called panning
index. The stereo panning spectrum holds the signals
between —1 to +1 (0 is center). The main aim of this feature
is to calculate the stereo panning information for different
frequencies based on the STFT of left and right channel.
The basic idea behind the stereo panning spectrum is to
compare the left and right channel signals in the time-
frequency [70] representation to derive a 2-dimensional
map that identifies the different panning gains associated
with each time-frequency bin. Many statistical features can
be derived from the stereo panning spectrum like: derivative
of panning index, panning root mean square for a particular
frequency band, panning for low medium and high frequen-
cies etc. This feature has been used in audio classification,
separating audio sources [71], music information retrieval
[69] and music classification [72].
- Group delay function (GDF): During frequency domain anal-
ysis of an audio signal, we generally avoid the phase infor-
mation and do analysis based on the real values. The
information in STFT phase function is extracted by calculat-
ing the derivative of the phase, this is called as group delay
function [73,75]. It is also known as negative derivative of
the phase. Group delay function reveals information about
the temporal events in a signal e.g. identifying spectral
peaks. The GDF can be: minimum phase GDF, maximum
phase GDF or mixed phase GDF. Generally formants are
extracted from GDFs and are used in various audio process-
ing algorithms. Another type of GDF is modified GDF,
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in which the cepstral smoothing is done prior to GDF
computation which smooths the intrinsic spikes of the
signal. GDF is used in speaker identification [74], speech
segmentation [73], language identification etc.

o Envelope Modulation Spectrum (EMS) based: The envelope

modulation spectra represents the slow amplitude modulations
in the signal and distribution of energy in amplitude fluctua-
tions across certain frequencies. The original audio signal is first
filtered into 9 octave bands with center frequencies of approx-
imately 30, 60, 120, 240, 480, 960, 1920, 3840, and 7680 Hz,
using eight-order Butterworth filters. Then the envelope of 10
signals: one original and 9 octave filtered signals is extracted
using Hilbert transform. Once the envelope of each signal is
extracted, the mean is removed and the power spectrum for
each of the bands is estimated by evaluating the DFT using
the Goertzel algorithm at frequencies 0-10 Hz. From the power
spectrum, six EMS metrics are computed for each of the 9
octave bands, and the full signal and it makes a 60-
dimensional feature vector. The 6 EMS features are:

- Peak frequency 0-10 Hz: It is the frequency corresponding
to the spectral peak with the maximum magnitude in the
spectrum.

- Peak amplitude: It is the absolute amplitude of the spectral
peak described above and it is seen as a measure of rhythm.
- Energy in spectrum 3-6 Hz: Energy in band 3-6 Hz is the
normalized energy present in the band and it corresponds
to the segment 167-333 ms which captures majority of syl-
lable duration in normal speech.

- Energy in spectrum 0-4 Hz: Human auditory system is most
sensitive around 4 Hz of modulation, this peak sensitivity
corresponds to the segment 0-250 ms which is quite close
to common syllable rate for speech.

- Energy in spectrum 4-10 Hz: This region of frequencies
focus on super segmental variations in the rhythm.

- Energy ratio between 0-4 Hz and 4-10 Hz: The energy below
4 Hz is uncorrelated with the energy in band 4-10 Hz. Hence
the ratio of these energies becomes a vital feature.

The EMS features is best used in classifying pathological
speech and control speech [47,48].

Algorithm 11: Envelope modulation energy in desired
frequency band

Result: Energy in desired frequency band

1. Input: Audio signal x

2. Find the spectrogram and cyclic frequencies of the signal.
3. Select the range of cyclic frequencies.

4. Calculate square of the spectrogram values.

5. Find summation of the squared spectrogram values.

6. Multiply the result number by 2, this gives energy in a
desired band.

o Long-term Avearge Spectrum (LTAS): LTAS captures atypi-
cal spectral information from the signal. LTAS [49] is used in
classifying pathological speech (like dysarthria, dyphasia
etc.) from the controlled normal speech. The intelligibility
of a speech is determined by the variations in nasality,
breath control and loudness of the speech. LTAS tries to cap-
ture these cues from each octave filtered speech signal.
There are 9 octave filters used at center frequencies 30, 60,
120, 240, 480, 960, 1920, 3840 and 7680 Hz. From each
octave filtered speech signal the following parameters are
determined and joined together to form a 99-dimensional
feature vector.

- RMS value normalized/full band RMS value

- Normalized mean frame RMS

- Standard deviation of frame RMS

- Frame standard deviation normalized by full-band RMS
- Frame standard deviation normalized by band RMS

- Skewness of frame RMS

- Kurtosis of frame RMS

- Range of frame RMS

- Normalized range of frame RMS

- Pairwise variability of RMS energy between ensuing
frames

o Chroma related features: Chroma features are interesting and
powerful representation of music audio in which entire spec-
trum is mapped into 12 bins that represents the 12 semi-
tones (or chroma) of musical octave. It can be computed from
the logarithmic short-time fourier transform of the sound sig-
nal. It is also called as chromagram. Another chroma based fea-
ture is chroma energy distribution normalized statistics. This
feature is used to identify similarity between different interpre-
tations of the music given.

« Tonality based features: The tonal sounds are actually the fun-
damental frequency of a harmonic stationary audio signal. In
music, tonality organizes the notes of the musical scale. The
main tonality based audio features are:

- Fundamental Frequency (FF): The fundamental frequency
FO is the first peak of the local normalized spectro-
temporal auto-correlation function. In simple terms, funda-
mental frequency is the lowest frequency of a periodic
waveform. For music, the fundamental frequency is the
musical pitch of a note that is perceived as the lowest partial
present. Fundamental frequency is an important feature and
used in music onset detection [61], environmental sound
recognition [39,40]and audio retrieval [63].

Algorithm 12: Fundamental frequency FO

1. Result: Fundamental frequency (FO)

2. Input: Audio signal x and sampling frequency fs.

3. Find the pitch of the audio signal by auto-correlation or
cepstral methods.

4, Pitch will give an estimate of the fundamental frequency
of the signal x.

- Pitch Histogram: Pitch histogram explains the pitch of a
signal in a more compact form. It has been highly used in
music genre classification [15].
- Pitch Profile: This feature is more accurate representation
of musical pitch and it has been used for musical key detec-
tion [64].
- Harmonicity: Harmonicity is a feature used to distinguish
between tonal and noise like sounds. It uses auto-
correlation function to find periodicity in sound in time or
frequency domain.
- Harmonic-to-noise ratio: It is computed as the ratio
between the harmonic part of the signal to the rest of the
signal. It has been used in analyzing pathological voices
[65] and music-related applications.
- Jitter:It computes the variations of fundamental frequency,
that is, the average absolute difference between consecutive
periods of speech. It is used in speaker recognition [67], ana-
lyzing pathological voices, determine vocal and non-vocal
sounds [66].

e Spectrum shape based features:
- Spectral Centroid: Spectral Centroid indicates the where
the center of mass of the spectrum is located. It describes
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the brightness of a sound signal and hence also called bright-

ness feature of a sound. It is computed considering the spec- Algorithm 15: Spectral Spread of an audio signal

trum as a distribution which values are the frequencies and
the probabilities to observe these are the normalized ampli-
tude. Spectral centroid is an excellent measure of brightness
of sound signal and used to measure of timbre of music [53],
music classification [29,30], music mood classification
[14,54]. Spectral Centroid of the music is higher than the
spectral centroid of speech [56]. The basic algorithm for cal-
culating spectral centroid is given below.

1. Result: Spectral Spread u,
2. Input: Audio signal x and sampling frequency fs.
3. Transform the signal in frequency domain.

4ty = /S0, (Fr— 1) S/ S0, S

where f, is the frequency corresponding to bin k and s; is
the spectral value at bin k,

by and b, are band edges and p, is spectral centroid

Algorithm 13: Spectral centroid of an audio signal

1. Result: Spectral Centroid
2. Input: Audio signal x and sampling frequency fs.
3. Convert the signal into frequency domain.

4ty = (0 Fisi)/ (R, S)
where f, is the frequency corresponding to bin k and s, is
the spectral value at bin k, b; and b, are band edges

- Spectral Center: This feature is closely related to the spec-
tral centroid. It is the measure of the median frequency pre-
sent in the signal spectrum. This is a median frequency
hence it balances the higher and lower energies. This feature
is applied in tracking rhythm in musical signals [55].

- Spectral roll-off: The spectral roll-off point is the frequency

- Spectral Skewness: Spectral skewness is the 3rd order statis-
tical value and it measure the symmetry of the spectrum
around its arithmetic mean value. This feature would be equal
to zero for silent segments and high for voiced parts.The
Skewness is the 3rd order statistical feature. Skewness equal
to zero describes symmetric distribution, skewness less than
zero indicates more energy to the right side of spectral distri-
bution and skewness greater than zero describes more energy
components are present on the left side of the spectrum. This
feature is used in mood detection [14,26] and music genre
classification [29,32,46,57], fault detection in motor bearings
[150] and Parkinson’s disease detection from speech [144].
Fig. 15 represents the skewness for different spectrum.

so that 95% of the signal energy is contained below this fre- Algorithm 16: Spectral skewness of an audio signal

quency. Spectral roll of is used in speech/music classification
[56], music genre classification [14,15,29,30], musical
instrument classification and audio-based surveillance sys-
tems [41].

Algorithm 14: Spectral Roll-off point of an audio signal

1. Result: Spectral Roll-off
2. Input: Audio signal x and sampling frequency fs.
3. Transform the signal in frequency domain.

1. Result: Spectral Skewness
2. Input: Audio signal x and sampling frequency fs.
3. Transform the signal into frequency domain.

4. skewness = S22 (fie — 1) s/ (12)> S0y, Sk

where f is the frequency corresponding to bin k and sy is
the spectral value at bin k,

by and b, are band edges, y, is spectral centroid and p, is
spectral spread

4. roll off point =i such that Z;'{:blsk = O.QS(ZZiblsk)
where s, is the spectral value at bin k and b; and b, are band
edges

— Spectral Spread: 1t is also called as Spectral Dispersion. This
feature is closely related to the bandwidth of the signal [55].
It can be described as average deviation of the rate-map
around its centroid. Noise like signals have wide spectral
spread than the pure tonal sounds which has small spectral
spread. It is generally, wide for music and environmental
sounds and comparatively narrow for speech like sounds

- Spectral Kurtosis: On the other hand, Kurtosis is the 4th
order statistical measure and describes the flatness of the
spectrum around its mean value. For gaussian distribution
the spectral kurtosis has value 0, if kurtosis is less than O,
we observe flat distribution and if spectral kurtosis is greater
than 0, we observe sharp peaked spectral. Just like spectral
skewness, spectral Kurtosis is also used as a feature in music
genre classification [29,32,57] and mood classification
[14,26], fault detection in bearing of electric motors [150]
and Parkinson’s disease detection from speech [144].
Fig. 16 explains the kurtosis for different type of spectrum

[56]. for a function f(x) or audio signal x.
Mean
Median Median Median
Mode
Mode = | 1= Mean I Mean=i | — Mode
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Fig. 15. Skewness for different type of spectrum.
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Algorithm 17: Spectral kurtosis of an audio signal

1. Result: Spectral Kurosis
2. Input: Audio signal x and sampling frequency fs.
3. Transform the signal into frequency domain.

4. kurtosis = 302, (Fi = 1) s/ (1) 0%, Sk

where f is the frequency corresponding to bin k and s; is
the spectral value at bin k,

b, and b, are band edges, y; is spectral centroid and , is
spectral spread

- Spectral Slope: It is the measure of slope of the amplitude
of the signal and it is computed by linear regression. This
feature is used in speech analysis [58] and in identifying
speaker from a speech signal [59].

Algorithm 18: Spectral slope of an audio signal

1. Result: Spectral slope
2. Input: Audio signal x and sampling frequency fs.
3. Transform the signal into frequency domain.

4. slope = Y32, (Fic = 1p)(Sk = Ho) /S5, (e — 1)
where f is the frequency corresponding to bin k
sy is the spectral value at bin k

by and b, are band edges

ls is mean spectral value

Uy is the mean frequency

- Spectral Decrease: It explains the average spectral-slope of
the rate-map representation, putting a strong emphasis on
low frequencies [60].

Algorithm 19: Spectral slope of an audio signal

1. Result: Spectral decrease
2. Input: Audio signal x and sampling frequency fs.
3. Transform the signal into frequency domain.

4. spectral decrease = Zﬁiblﬂ ((Sk — Sp,)/(k— 1))/222:b1+15k
where s, is the spectral value at bin k and b; and b, are band
edges

- Bandwidth: Spectral bandwidth is the second order statis-
tical value the determines the low bandwidth sounds from
the high frequency sounds. It is used in music classification
[15] and environmental sound recognition [16].

— Spectral Flatness: Spectral flatness is the measure of the
uniformity in the frequency distribution of the power spec-
trum. It is calculated as the ratio of the geometric mean to
the arithmetic mean. It can be used to distinguish between

f(x) f(x)

"

¥ N x

harmonic and noise like sounds. For harmonic sounds the
spectral flatness is close to zero and for noise like sounds
the value of spectral flatness is close to one. It is employed
in music onset detection [61], music classification and audio
fingerprinting [59].

Algorithm 20: Steps to calculate spectral flatness

—_

Result: Spectral flatness value

Input: Audio signal x.

calculate the periodogram power spectral density of x.
Find the geometric mean of the periodogram signal.
Find arithmetic mean of the periodogram signal.
Calculate the ratio of geometic and arithmetic mean.
Result is the value of spectral flatness.

No Uk

- Spectral Crest Factor: In contrast to the spectral flatness,
spectral crest factor determines how peaked is the power
spectrum of the sound signal. It is also used to distinguish
between harmonic/tonal sounds and noise like sounds. It is
higher for harmonic/tonal sounds and lower for noise like
sounds. This feature is also used for audio fingerprinting
[59] and music classification [29].

Algorithm 21: Spectral crest factor algorithm

1. Result: Spectral crest factor of an audio

2. Input: Audio signal x.

3. Calculate peak amplitude of the signal x.

4, Calculate root mean square value of x.

5. Crest factor is the ratio between peak amplitude and RMS
value.

6. Convert the crest factor in decibles (if required).

- Entropy: Entropy is also the measure of uniformity of flat-
ness, and it is computed as Shannon’s entropy or Renyi
entropy. This feature has been used for automatic speech
recognition [62].

The Shannon’s entropy for a signal could be calculated by
using formula —sum(P;logP;) where P; is the sample class
probabilities.

- Spectral Flux: The spectral flux is defined as 2-norm of the
frame-to-frame spectral amplitude difference vector. It
points the sudden changes in the frequency energy distribu-
tion of sounds. This feature is used in speech/music discrim-
ination [27], music genre classification [29,32]and
environmental sound classification [39,40].

- Octave based spectral contrast (OBSC): It is the difference
between peaks and valleys measured in sub-bands by octave
scale filters. It has been used for music classification [29]and
music mood classification [14,26].

f(x)

Zero kurtosis
Gaussian distribution

Positive kurtosis

Negative kurtosis

Fig. 16. Kurtosis for different type of spectrum.
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Algorithm 22: OBSC extarction algorithm

Algorithm 24: LPCCs extraction

1. Result: OBSC feature

2. Input: Audio signal x.

3. Perform framing or windowing on the signal.

4. Take FFT of each framed signal.

5. Divide the transformed signal into 6 octave scaled sub-
bands.

6. For each band, calculate peak and valley values.

7. Calculate the contrast of the peaks and valleys.

8. Valleys and contrast gives OBSC feature set.

4.3. Cepstral domain features

A cepstrum is obtained by taking the inverse Fourier transform
of the logarithm of the spectrum of the signal. There is a complex,
power, phase and real cepstrum. Among all of these, power cep-
strum is the one most relevant to the speech signal processing.
The analysis of the cepstrum is called as cepstrum analysis, que-
frency analysis (equivalent to frequency analysis in spectrum
domain) or liftering [76](equivalent to the filtering in spectrum
domain). The cepstrum features are mainly used in pitch detection
[77,78], speech recognition and speech enhancement [79]. The
cepstrum/cepstral features are discussed below:

e Mel Frequency Cepstral Coefficients (MFCCs): MFCCs are derived
from the cepstral representation of an audio clip. MFCCs repre-
sents short-time power spectrum of an audio clip based on the
discrete cosine transform of log power spectrum on a non-
linear mel scale. In MFCCs the frequency bands are equally
spaced on mel-scale, which mimics the human auditory system
very closely, making MFCCs key feature in various audio signal
processing applications. MFCCs has been widely used in speech
recognition [80,83], speech enhancement [84], speaker recogni-
tion [81], music genre classification [82], music information
retrieval [85], audio similarity measurement [82], vowel detec-
tion [145] etc.

Algorithm 23: MFCC extraction

1. Result: Mel frequency cepstrum coefficients

2. Input: Audio signal x

3. Frame the signal into short frames. >Use windowing
4. For each frame, calculate the periodogram estimate of the
power spectrum.

5. Apply the mel filter-bank to power spectrum, sum the
energy in each filter.

6. Take logarithm of filter-bank energies.

7.Take Discrete cosine transform (DCT) of the log filter-bank
energies.

8. Keep 2-13 DCT coefficients, discard the rest.

e Linear Prediction Cepstral Coefficients (LPCCs): The cepstrum
has number of advantages like soucre-filter separation,
orthogonality, compactness etc. These properties makes cep-
strum coefficients robust and suitable for machine learning.
On the other hand, linear prediction coefficients (LPC) are
too sensitive to numerical precision, hence it is desirable to
transform the LPC to the cepstral domain. The resultant
transformed coefficients are called as LPCCs. We can say that
LPCCs are derived from LPCs. LPCCs has been used in various
application areas like speech recognition [86], speech analy-
sis [87], noise removal [88], music genre classification [89]
etc. Algorithm below describes the steps to calculate LPCCs
from an audio signal.

1. Result: LPCCs feature

. Input the audio signal x

. Perform pre-emphasis on original signal.

. Frame the signal using windowing method.

. Find the auto-correlation of the signal with itself.
. Calculate LPC parameters.

. Convert the LPC parameters in cepstral domain.

. Result is LPCCs.

OO U A WN

e Preceptual linear prediction (PLP) cepstral coefficients: The PLP
coefficients is based on the concepts: critical band spectral
resolution, equal-loudness curve and intensity loudness
power law [90]. The PLP coefficients are derived from the
linear prediction coefficients (LPC) by performing percep-
tual processing before auto-regressive modelling. After this
processing, the linear coefficients are converted into cep-
stral coefficients. It has been widely employed in emotion
recognition [91], speech recognition [92], baby crying
sound analysis [93], animal sound vocalization analysis
[94] etc.

Algorithm 25: PLP cepstral extraction

1. Result: PLP cepstral coefficients

. Input the audio signal x

. Perform windowing on signal.

. Do critical band analysis.

. Perform equal loudness and pre-emphasis.
. Do intensity-loudness conversion.

. Apply linear prediction algorithm.

. Convert into cepstarl domain.

CON O U A WIN

o Relative-spectral PLP (RASTA-PLP) feature: RASTA is a tech-
nique that applies a band-pass filter to the energy in each
frequency sub-band in order to smooth over short-term
noise variations and to remove any constant offset
resulting from static spectral coloration in the speech
signal. The RASTA-PLP features are robust to noise version
of PLP features. The advantage of the RASTA-PLP feature
is that it tries to incorporate noise cancellation feature
of human auditory system. This hybrid feature is
widely employed in speech recognition [95], gender
classification [96], speaker verification [97] etc. The
process to extract RASTA-PLP features is explained in
algorithm below.

Algorithm 26: RASTA-PLP feature extarction

1. Result: RASTA-PLP feature set

. Input the audio signal x

. Perform pre-emphasis and windowing on original signal.
. find DFT of the windowed signal.

. Perform critical bank analysis on DFT signal.

. Take logarithm of the result of step 5.

. Perform RASTA-filtering. 8. Perform equal loudness and
pre-emphasis on RASTA filtered signal.

9. Apply Intensity loudness power law.

10. Take inverse of logarithm of the result of step 9.

11. Perform auto-regressive modelling.

12. Convert into cepstral domain.

13. Result is the RASTA-PLP coefficients.

NoubhwN
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e Greenwood function cepstral coefficients (GFCC): GFCCs [98]
were introduced as a generalized form of MFCCs. GFCCs
use mel-scale features that mimics the properties of HAS
and theoretically well-founded for nearly all terrestrial
mammals and give good vocal representation for nearly all
species. GFCCs can be implemented using very basic knowl-
edge of the minimum and maximum frequency range for a
particular species and is derived from greenwood equation.
Greenwood equation nearly maps the cochlear-frequency
position for all species. This feature is highly employed in
environmental sound recognition specially for animals and
bird sound classification [99].

Algorithm 27: GFCCs extraction

1. Result: Greenwood function cepstral coefficients

2. Input: Audio signal (x)

3. Frame the signal into short frames. >Use windowing
4. For each frame, calculate the periodogram estimate of the
power spectrum.

5. Apply the Greenwood-function scaled filter-bank to
power spectrum, sum the energy in each filter.

6. Take logarithm of filter-bank energies.

7. Take Discrete cosine transform (DCT) of the log filter-
bank energies.

8. Result is GFCCs.

e Gammatone cepstral coefficients (GTCCs): The main problem
with the automatic speech recognition (ASR) systems is
noise reduction. In recent years, the GTCCs has shown noise
robustness in many ASR systems. GTCCs are based on gam-
matone filter banks, these filter banks give cochleagram as
the output which is actually the frequency-time representa-
tion of a sound signal. The extraction process of GTCCs is
similar to the extraction process of MFCCs except the mel-
filter bank is replaced by gammatone filter bank. Just like
MFCCs, GTCCs can also have additional features like delta
GTCCs, delta-delta GTCCs which are actually the first and
second order derivatives of GTCCs. These group of cepstral
features are used in environmental sound recognition [100]
and speech recognition [101].

Algorithm 28: GTCCs extraction

1. Result: Gammatone cepstral coefficients

2. Input: Audio signal (x)

3. Frame the signal into short frames. >Use windowing
4, For each frame, calculate the periodogram estimate of the
power spectrum.

5. Apply the gammatone filter-bank to power spectrum,
sum the energy in each filter.

6. Take logarithm of filter-bank energies.

7. Take Discrete cosine transform (DCT) of the log filter-
bank energies.

8. Result is GTCCs.

4.4. Discrete wavelet transform domain features

The wavelet transform is another way to transform the time-
domain audio signal into a time-frequency representation. It com-

putes the inner product of the signal with a member from family of
wavelets. There are two types of wavelets: continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The
wavelet specially DWT has the capacity to extract information
from non-stationary signals like audio. It overcomes the shortcom-
ings of the STFT that provides uniform time-frequency resolution.
DWT gives high time resolution and low frequency resolution for
higher frequencies and high frequency resolution and low time
resolution for lower frequencies. The approximations and detailed
coefficients are generated by the wavelet transform that gives the
information about a signal. These approximations and detailed
coefficients are called as wavelet features. These wavelet features
could be extracted either from wavelet transform or from wavelet
packet decomposition. In wavelets the approximation coefficients
are decomposed while in wavelet packet decomposition/transform
both approximation and detailed components are decomposed.
Below Fig. 17 explain the difference between wavelet transform
and wavelet packet transform.

The conventional features like MFCCs, PLPC etc could be
extracted from the wavelet packet decomposition. Or these coeffi-
cients could be directly used as wavelet features. These features or
coefficients are used in audio analysis [122], audio classification
[123,136], audio fingerprinting [124], content-based audio retrie-
val [125], music classification [126], vowel detection in speech sig-
nals [145], snore sound analysis [133] audio-visual emotion
recognition [134], detecting fault bearing in electric motors [150]
etc.

4.5. Image/texture based features

e Local Binary Pattern (LBP): Local binary pattern is primary
used for computer vision applications like face detection, face
recognition, object detection etc. LBPs measures the local spa-
tial information and gray scale contrast. In audio signal pro-
cessing, the LBPs are extracted from the spectrograms of the
signals and used in audio scene classification [112,113],
depression analysis from speech [114] snore sound discrimi-
nation [115], emotion detection [117], and pathological voice
(Cordectomy and frontolateral resection diseases) detection
[143].

Algorithm 29: Local Binary pattern from spectrogram

1. Result: LBP feature set

2. Input: Audio signal x.

3. Generate spectrogram from the audio signal.

4. Convert the RGB image of spectrogram into gray scale
image.

5. Choose the radius of the mask and type of normalization.
6. Extarct LBP features from the gray scale image.

7. LBP are generated from each masked image subset.

e Local Ternary Patterns (LTPs): LTPs are the extension of the
LBPs. Just like LBPs the LTPs are extracted from the image
description of a signal like a spectrogram. But unlike LBPs,
it doesn’t threshold the pixels into binary pattern of 0’s
and 1's, rather it uses a threshold constant to threshold pix-
els into three values i.e. —1, 0 and 1. In this manner each
threshold pixel could have any of these three values and
neighbouring pixels could be combined after thresholding
into a ternary patterns.The LTPs are used in audio scene clas-
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Fig. 17. Left: Wavelet Decomposition, Right: Wavelet packet decomposition.

sification [140], fall detection in elderly people by analyzing
environment sounds [141], and in health care monitoring
using speech analysis [142]. The algorithm to extract LTPs
is explained below:

Algorithm 30: Local Ternary Pattern Extraction

1. Result: Local ternary patterns

2. Input: Audio signal x.

3. Generate spectrogram from the audio signal.

4. Convert the RGB image of spectrogram into gray scale
image.

5. Consider the image mask from where LTPs are to be
extracted.

6. Calculate the lower and upper bits using ternary function
and three threshold values —1, 0 and 1.

7. Calculate lower and upper values using lower and upper
bits.

8. Construct lower and upper signals using lower and upper
bits.

9. Generate histogram from these signals.

10. Join the histograms to get LTPs.

e Histogram of gradients (HOG) feature: Just like LBPs, HOG fea-
tures are used to extract the time-frequency information
from the spectrograms. This feature also has been used in
acoustic scene classification [113,116],snore sound discrim-
ination [115], emotion detection [117].

Algorithm 31: HOG descriptor from spectrogram

1. Result: HOG descriptor

2. Input: Audio signal x.

3. Generate spectrogram from the audio signal.

4. Convert the RGB image of spectrogram into gray scale
image.

5. Choose name-value pair arguments such as cell size,
block size etc.

6. Extaract HOG features from spectrogram.

7. Output is HOG feature from each cell or block of the
image.

e Scale invariant feature transform (SIFT): SIFT is also a feature
extraction algorithm in computer vision used initially for
detecting local information in images. This feature is also
employed on spectrograms of audio signals to detect the
local information. It has been highly used in emotion detec-
tion [117] and audio-video concept classification [118].

Algorithm 32: SIFT descriptor

1. Result: SIFT feature set

2. Input: Audio signal x.

3. Generate spectrogram from the audio signal.

4, Convert the RGB image of spectrogram into gray scale
image.

5. Perform scale-space extrema detection on gray scale
image.

6. Localize the keypoints.

7. Assign orientation to each keypoint.

8. Create keypoint descriptor called as SIFT descriptor.

4.6. Deep features

Deep learning has been proven to be a powerful technique to
extract high level features from low level information. The features
extracted from the hidden layers of various deep learning models is
known as deep features. The deep features could be extracted from
any deep leaning model like convolutional neural networks
(CNNs), deep neural networks (DNNs), recurrent neural networks
(RNN ), Deep stacked auto-encoder (SAE), unidirectional long short
term memory network (LSTM), bi-directional long short term
memory (BLSTM) and other similar models.

Deep features are extracted from the deep neural networks
(DNNSs). The MFCCs or any other relevant audio feature is fed to
the DNNs as the input. The deep features depend on how deep
the neural network is. If we have shallow neural network, the deep
features given by lower layers can be thought of as speaker-
adapted features. And from the upper layers class-based discrimi-
natory features could be extracted. The deep features could also be
extracted from the bottleneck layer of a DNN. Fig. 18 shows the
extraction of deep features from bottleneck layer of a DNN. In this
figure DAF stands for deep audio features ).

Any CNN architecture consists of three major components: con-
volution layers, pooling layers and fully connected layers as shown
in Fig. 19. Convolution layers apply definite number of convolu-
tional filters on the spectrogram of an audio signal. The output of
this layer is called as feature map. Pooling layer decrease the
dimensions of the feature maps generated by convolutional layers
and hence reduce the processing time. Fully connected layers
extract global features from the local feature maps. The deep fea-
tures could be extracted from any of these layers, the initial layers
of the CNN gives deep features which is nothing but the informa-
tion about pixels and edges of the spectrogram. The higher layers
gives deep features which have highly discriminative. while the
deep features extracted from the fully connected layer gives global
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Fig. 19. Basic structure of CNN.

information. Hence, the significance of the deep features highly
depends on the layer from which these are extracted.

Another type of artificial neural network is auto-encoder, which
is basically used for dimension reduction and works in an unsuper-
vised manner. The stacked auto-encoder (SAE) is a neural network
having multiple layers of sparse auto-encoders in such a manner
that the output of the each layer is fed as the input to its successive
layer. Once the SAE is trained, the deep features could be extracted
from the hidden deep layers of the unsupervised trained SAE and
can be used for various applications.

In order to encode the sequential knowledge in the model,
RNNs are used. RNNs have advantages over DNNs as it has flexibil-
ity to process sequential knowledge and have ability to memorize
information internally. The memory unit is called as LSTM. Unidi-
rectional or bi-directional LSTM are the types memory element. In
unidirectional LSTM the flow of information is in just forward
direction while in BLSTM, one LSTM layer process the information
in forward direction and another LSTM layer process the informa-
tion in backward direction. The deep features could be extracted
from any deep layer of LSTM-RNN.

In audio signal processing, deep features have been used in
acoustic scene classification [127,128], speaker recognition [130],

audio-video analysis [129], gender recognition [146], emotion
recognition [131] and spoofing detection [132].

4.7. Sparsity in features

In numerical analysis, a sparse matrix is the one in which most
of the elements is zero and very few elements are non-zero. The
same concept can be applied to audio signals, which may have very
few non-zero components when represented in a particular
domain. For example, a pure tonal signal can be represented by
one single spike in frequency domain, hence we can say that signal
is sparse in frequency domain. Hence, very less number of features
are required to represent a signal if it has sparsity. Sparsity can be
achieved in any domain say time domain, frequency domain, time-
frequency domain, wavelet domain, cepstral domain etc. Once the
sparsity is achieved in any of the domains, the domain specific fea-
tures can be extracted and analyzed. For example, if sparsity is pre-
sent in cepstral domain, cepstral features can be extracted from the
compact sparse signal. This sparsity of a signal may finally leads to
compressing sensing. The sparsity can be realized by many meth-
ods, to name a few are:
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e Matching Pursuit (MP)

e Orthogonal matching pursuit
o Stage wise greedy method

e Basic pursuit

e Coordinate descent etc.

The sparsity plays an important role in compressive sensing of
speech signals [108], speech/music separation [109] and scalable
audio classification [110].

4.8. Other domains

e Eigen Domain features: The eigen domain features are the set of
features extracted from the eigen vectors of an audio signal.
Eigen vector of an audio signal is the most dominant vector/
dimension present in the signal. The most dominant vector
[111] can be obtained by various techniques, the most exploited
is principal component analysis (PCA). Other techniques are
independent component analysis (ICA) and singular value
decomposition (SVD). These techniques project the original

-Zero crossing rate,

audio signal to the eigen-vector space. Most relevant eigen
domain features are MPEG-7 audio spectrum basis feature and
distortion discriminant analysis feature.

e Phase Domain:

- Modified group delay function (MODGDF): The modified
group delay function gives better spectral smoothing than
the standard group delay function. In context of speech, zeros
of the slowly varying envelope of speech represents the nasal
sounds. The zeros in speech are either within or outside the
unit circle since the zeros also have nonzero bandwidth
and produce spikes in the spectrum. In MODGDF these zeros
are suppressed leading to a smoother spectrum of the sound.
From this MODGDF, cepstral coefficients could be extracted
and are called as MODGDF cepstral coefficients. This feature
has been used in speech recognition [102], speaker verifica-
tion [103] and synthetic speech detection [104,105].

- cosine normalized phase cepstral feature: These cepstral fea-
tures are derived by um-wrapping the phase spectrum of a
signal. The cosine normalization is done on this un-
wrapped signal and the cepstral coefficients are extracted

-Auto-regression based features: LPC, CELP, LSF

Modified ZCR = Peak Frequency

-Amplitude based
features: AD, ADSR, log
attack time, shimmer
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deep neural networks (DNNs)

recurrent neural networks (RNNs)

Deep stacked auto-encoder (SAE)

unidirectional long short term memory network (LSTM)
bi-directional long short term memory (BLSTM)

DWT based features
CWT based features
Wavelet transform
based features

Matching Pursuit (MP)
Orthogonal matching
pursuit

Stage wise greedy
method

Basic pursuit
Coordinate descent etc.

Wavelet packet
decomposition based

Fig. 20. Benchmarking of audio features discussed.
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by performing discrete cosine transform on the normalized
signal. This feature is used in spoofing detection [106] and
speaker recognition [107].

5. Critical analysis and conclusion

In this work we have discussed about the various thresholds of
human auditory system and the classification of sounds into
speech, music and environmental sounds. This review also covers

Shimmer, GDF, FF,
harmonic-to-noise ratio,
spectral slope, skewness,

kurtosis, MFCC, LPCC,

RASTA-PLP, Peak

frequency, MODGDF,DAF

LPC, MFCC, LPCC, FF,
skewness, kurtosis, Entropy,
PLP, RASTA-PLP, GTCC,

wavelet, sparse

[SPSF, LSF, MFCCs,LPCs

Sub-band energy ratio,
GDEWVD, LPC, FF,

the evolution of the audio features in early 1950’s and their pro-
gress till date. This paper discuss the features from time domain,
frequency domain, time-frequency domain, cepstral domain, phase
domain,sparse domain, eigen domain, wavelet domain and image/-
texture based features. Fig. 20 gives the benchmarking of the audio
features discussed in this review article.

In this review work, we try to relate the current audio features
and their extraction algorithms which are suitable for machine
learning or machine hearing in the most popular domains of
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Fig. 21. Summary of audio signal features according to their application area (Red color features shows most prominent features).
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audio i.e. speech, music and environmental audio and their
applications.

Furthermore, we have tried to explain the pseudo code or algo-
rithm whatever applicable to explain the extraction process of an
audio feature. The MATLAB (version 2019) commands are men-
tioned wherever it is directly available for use, otherwise the
extraction algorithm is provided to have better understanding.

Fig. 21 gives the bird’s eye view to the audio application areas
and the list of respective audio features which are most suitable
for that very particular application. The features highlighted in
red color shows the most prominent features for that very partic-
ular application. The application areas exploited by the researchers
the most are: human speech based applications, applications
involving music signals and applications related to environmental
sounds. For speech signals, the most researched areas include
speech recognition, speech enhancement, speaker/gender recogni-
tion, voice activity detection, pathological speech analysis, blind
source separation and emotion recognition. Similarly, for music
based applications, the main focus of the state-of-the-art is on
music segmentation, music mood classification, music analysis,
speech-music classification and music genre classification. For
environmental sounds, the most of the research converges into
applications such as acoustic scene classification, audio finger-
printing, Industry applications and animal sound classification.

For instance say under the category speech the one of the most
popular area of research is speaker/gender recognition. According
to the literature survey only few audio features have proven to be
most discriminatory and suitable for machine learning. In this case
shimmer, group delay function (GDF), fundamental frequency (FF),
harmonic-to-noise ratio, spectral slope, skewness, kurtosis, MFCCs,
LPCC RASTA-PLP and peak frequency are mostly used features. It
could be concluded that, not every feature provides good results
for every application. A researcher must look for the best hand
crafted features which are suitable for a particular application.

In future, a more comprehensive analysis of the audio signals,
acoustic signals and vibrations could be done. A detailed discussion
on feature and its behaviour with audio, acoustic or vibration sig-
nal would be an interesting analysis. We expect the change in
trends in audio signal feature extraction methods in future and
would like to analyze those new and emerging features used in
machine hearing and their relevant application areas.
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